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We consider multi-robot service scenarios, where tasks appear at
any time and in any location of the working area. A solution to such
a service task problem requires finding a suitable task assignment
and a collision-free trajectory for each robot of a multi-robot team.
In cluttered environments, such as indoor spaces with hallways,
those two problems are tightly coupled. We propose a decentralized
algorithm for simultaneously solving both problems, called Hierar-
chical Task Assignment and Path Finding (HTAPF). HTAPF extends
a previous bio-inspired Multi-Robot Task Allocation (MRTA) frame-
work [1]. In this work, task allocation is performed on a arbitrarily
deep hierarchy of work areas and is tightly coupled with a fully
distributed version of the priority-based planning paradigm [12],
using only broadcast communication. Specifically, priorities are
assigned implicitly by the order in which data is received from
nearby robots. No token passing procedure or specific schedule is
in place ensuring robust execution also in the presence of limited
probabilistic communication and robot failures.

1 PROBLEM DESCRIPTION
We assume the following simplified world model. The work area
is partitioned in a 4-connected grid which can be configured to
represent spaces of different complexity. A grid cell ci ∈ C might
represent free space, where a robot can move and a task might
appear, or an obstacle. All robots are identical and a robot ri ∈ R

is identified by its unique id i and its position in the environment.
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Figure 1: Interaction scheme for the proposed approach. An
arrow between two blocks indicates local information pass-
ing. A sequence of⌢ incoming/outgoing communication.

Robots can communicate with each other by using broadcast com-
munication (using a probabilistic WiFi model [2, 4, 13]) without
any re-broadcasting. An unfinished taskTi ∈ Tu is associated with
an area ai and requires any robot to move and work at its location
(e.g., for cleaning, delivery, or maintenance). The task distribution
is not known in advance, and tasks may appear at any time. Robots
have limited perception of the available tasks, using the same prob-
abilistic model that is used for communication. In this study, the
primary objective is to serve the highest number of tasks.

2 APPROACH
Our approach uses three major components, see Fig. 1: the local
knowledge available to each robot, the task assignment process
leveraging interaction with other robots, and the motion planner
exploiting the knowledge of other robots’ plans.

The local knowledge is available to each robot and consists of a
world model, interaction values, and motion plans of nearby robots.
The world model consists of a hierarchical description of the work
area represented by a quad-tree. Each leaf node relates to a cell ci



and the root node corresponds to a region representing the whole
environment. Every node in the tree is associated with an area
ai ∈ A that corresponds to a group of cells. Thus, each area of any
size can contain a set of tasks that need to be served. When a task is
added or a robot moves into an area, the corresponding node in the
world model of robot r is updated by re-computing a local utility
function, obtained as the expected number of tasks that robot r can
execute in ai :

U r (ai ) =
∑

Ti ∈Tu
ai

1 −Cr (Ti )∑
ro,r

1 − h(ro ,Ti )
, (1)

The term h(·, ·) → [0, 1] is a heuristic function that estimates the
normalized lower bound cost for any other robot ro to reach taskTi
or its associated area, computed using the Floyd-Warshall algorithm.
The termCr (Ti ) → [0, 1] is the normalized cost for robot r to reach
taskTi , as estimated by the motion planner. To this end, knowledge
of the planned paths by nearby robots is used, exploiting the locally-
shared plans received through communication. Finally, the local
knowledge contains also the “interaction values” received from
nearby robots encoding the utility of working in other areas where
the other robots reside, which are used for task assignment.

The decentralized assignment extends a work inspired by the
collective decision making abilities of honeybees [8–10], used in
different contexts [3, 5, 6] and extended to MRTA [1]. We expand
over previous work by considering a hierarchical representation
of the world, collision-free robot motion, limited communication,
and robot failures. At any time, a robot faces the choice between
descending the quad-tree towards leaf nodes, exploiting current
area information to reach a task to be executed, or moving up the hi-
erarchy towards the root node, hence exploring other areas. When
descending, a robot is considered “uncommitted” and can choose be-
tween the underlying four areas according to the utility of executing
tasks therein. When ascending, the robot is considered “committed”
to its current area and can abandon it, moving toward the parent,
accessing the knowledge from neighboring areas. Ascending and de-
scending is performed according to a probabilistic threshold-based
choice, which can be tuned to balance the exploration-exploitation
trade-off. Robots assigned to leaf nodes are considered allocated
to task execution. Robots assigned to intermediate nodes are free
to explore the area using a random walk. The assignment process
is as follows. Consider a robot r to be assigned to a non-leaf node.
The robot can change its assignment to other nodes according to
five concurrent processes: i) spontaneous commitment, ii) recruit-
ment, iii) spontaneous abandonment, iv) cross-inhibition, and v)
self-inhibition. i) and ii) are “descending transitions” and iii) – v)
are “ascending transitions”. We refer to i) and iii) as spontaneous
processes, as they are determined by individual knowledge, and
the others as interactive processes that take place upon interaction
between pairs of robots. Specifically, spontaneous commitment
(i) represents the decision of a robot to move to one of the four
child nodes, assigning higher probabilities to areas with higher
utility: γ ri = k · U r (ai ). Conversely, spontaneous abandonment
(iii) represents the probability of being assigned to the parent node:
αri = k(1−U

r (ai )). For interactive processes, a robot ro is randomly
chosen among the known robots in ai and a transition probability is
computed according toU ro (ai ). The recruitment process (ii) allows

a robot r to get recruited by other robots from the child nodes, and
is defined as ρri = h · U ro (ai ). Self-inhibition (v) is used to cope
with overcrowding which impairs robots’ motions. It is defined as:
ψ r
i = h ·U ro (ai ) · H(|Rai | − θψ ), where |Rai | represents the per-

centage of the population of the area ai andH is the Heaviside step
function, which enables the process only if the population in the ith
area exceeds a specific capacity. Cross-inhibition (iv) forces a robot
i to abandon a region with low utility in favor of a region j with
higher utility. It is used to focus the assignment to areas of high util-
ity, allowing the robots to abandon their current area to explore one
of the sibling areas. The purpose of this process is to balance poor
commitments that might arise from outdated/limited knowledge,
and is defined as: βri, j = h ·U

ro (ai ) ·H(θβ − |Rai |), i , j , where the
Heaviside function enable the process only if the population does
not exceed a given capacity. Interactive transitions provide a means
to tune the assignment process to the density of robots in a given
area, as the probability of selecting a robot assigned to a certain area
is proportional to the density of that area. Processes are weighted
by two free parameters, k and h, used to define the ratio between
interactive and spontaneous processes [10]. Changing this ratio
allows switching between a utility-proportional deployment, to a
greedy-like allocation, to a reactive deployment in which robots
promptly adapt to changes in the area utility [1].

Motion planning uses a priority-based planning scheme assuming
that robots plan sequentially, treating the plans of previous robots
as known dynamic obstacles. We implement this approach in a
distributed way, similar to previous work [12]. At the beginning,
we pre-compute the all-pair shortest paths in a pre-processing step
using the Floyd-Warshall algorithm. We use the all-pair shortest
paths in two ways: i) to normalize the all-pair shortest paths and
use the resulting values for our heuristic function h(·, ·) (see Eq. (1));
ii) to seed an admissible heuristic that speeds up the actual path
planning. We use Safe Interval Path Planning (SIPP) [7], a variant
of A* by making two adjustments: i) we plan up to a user-specified
planning horizon and ii) we consider any cell in our goal region
aд as goal. This allows the assignment process to reason about the
expected number of tasks rather than having to consider low-level
congestion information of the path planner. Our approach is fully
distributed and asynchronous with no explicit synchronization.

3 RESULTS
We compare our approach against three baseline algorithms: two
Greedy variants and a Contract Net Protocol [11] approach. We
perform tests on environments of different size, with robot failures,
and different communication settings. Results show consistently
good results in all cases with respect to the number of finished tasks
and task response time. In contrast, the performance of our baseline
algorithms varies much more. To summarize, HTAPF is observed
to be scalable and robust to communication and robot failures.
Scalability stems from our bio-inspired task-assignment approach
mediated from swarm robotics research, which is tightly coupled
to a search-based path planning approach. Thanks to this coupling,
HTAPF is able to dynamically adjust the robots’ density within the
work area, granting consistently good performance across different
problem instances.
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