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Abstract—For robots with different types of sensors, loop
closure in a multi-robot SLAM scenario requires keypoints
that can be matched between sensor measurement point clouds
with different properties such as point density and noise.
In this paper, we evaluate the performance of several 3D
keypoint detectors (Harris3D, ISS, KPQ, KPQ-SI, and NARF)
for repeatability between scans from different sensors towards
building a heterogeneous multi-robot SLAM system. We find
that KPQ-SI and NARF have the best relative repeatability,
with KPQ-SI finding more keypoints overall and a higher num-
ber of repeatable keypoints, at the cost of significantly worse
computational performance. In scans of the same area from
different poses, both detectors find enough keypoints for point
cloud registration and loop closure. For heterogenous multi-
robot SLAM applications with computational or bandwidth
restrictions, the NARF detector consistently finds repeatable
keypoints while also allowing for real-time performance.

I. INTRODUCTION

In multi-robot Simultaneous Localization and Mapping
(SLAM), a group of robots explore and map an unknown
area. Each robot may localize on its own and build its own
map, but it is more efficient for their maps to be combined so
each robot only need explore part of the area. Additionally,
point cloud registration can improve an individual robot’s
localization using shared information, as it can observe other
robots or use their observations to constrain its own pose.

Many recent approaches for multi-robot SLAM improve
localization for a robot team [1]-[4], but most consider
homogeneous groups, meaning all robots have the same
sensors. Thus, detecting that two robots are observing the
same scene is similar to detecting single-robot loop closure.

For heterogeneous robots with different sensors, these
shared observations are much more difficult to detect. Con-
sider a scenario where large ground vehicles map an outdoor
region with the aid of small Unmanned Aerial Vehicles
(UAVs). The ground vehicles may have high-quality Inertial
Measurement Units (IMUs) and heavy, expensive sensors
such as LIDAR, which provide an accurate point cloud of the
scene but no visual information. The UAVs are too small to
carry a LIDAR, but have lightweight, low-quality IMUs and
one or more small cameras. They can reconstruct a point
cloud using stereo vision, but it has very different error
properties to the LIDAR scans. Ideally, the UAVs initially
explore to construct a coarse map, then important areas of
the map are refined using ground vehicles. Meanwhile, the
UAVs use their observations of areas already mapped by the
ground vehicles to reduce drift and refine their pose history.

Authors are with the Department of Computer Science, University of
Southern California, USA {boroson, ayanian}@usc.edu. This

work was supported by a NASA Space Technology Research Fellowship
and by ARL DCIST CRA W911INF-17-2-0181.

Finding correspondences between LIDAR scans and stereo
cameras is challenging since LIDAR does not provide im-
agery. While both can provide 3D point clouds (as can other
sensors like RGB-D cameras), the point clouds generated
have different resolutions and error models, which make
dense methods for data association challenging (see Fig. [I).
However, correspondences can be found by matching key-
points observed in all types of point clouds. These keypoints
are identified using keypoint detectors, or methods to select
unique and repeatable points in the point cloud.

Once keypoints have been detected in point clouds, us-
ing them for multi-robot SLAM would require identify-
ing matches, or pairs of keypoints corresponding to the
same physical location. These matches are typically found
using descriptors, which uniquely describe each selected
point. Several types of descriptors exist for keypoints in
point clouds, including descriptors associated with keypoint
detectors (e.g., NARF [5] and ISS [6]), and standalone
descriptors (e.g., Spin Images [7] and variations on Point
Feature Histograms [8], [9]). Alexandre [10] and Guo et
al. [11] evaluated 3D descriptors on point clouds from
various sensors, and found that all descriptors worked sig-
nificantly better when applied to detected keypoints rather
than a uniform sampling. However, this descriptor matching
approach assumes that those keypoints are the same between
point clouds. Thus, before detected keypoints can be matched
and used in SLAM, it is necessary to identify keypoint
detectors with this property, which is the focus of this paper.

The contribution of this paper is an evaluation of 3D
keypoint detectors for loop closure in heterogeneous multi-
robot SLAM. Specifically, we seek a keypoint detector that:

1) Finds repeatable keypoints across different sensor types;

2) Finds repeatable keypoints in observations made from

different poses;

3) Detects relatively few high-quality keypoints that can be

shared even with low-bandwidth communication; and
4) Detects keypoints efficiently from LIDAR and stereo
camera point clouds to enable real-time SLAM.
To the best of our knowledge, this is the first comparison of
3D keypoint detectors for SLAM or visual odometry.

We evaluate 5 commonly used 3D keypoint detectors
for these properties using point clouds from LIDAR and
stereo camera scans in the KITTI dataset [12], which are
representative of measurements made by mobile robots in
SLAM applications. We evaluate repeatability of each de-
tector, measuring how likely it is that a keypoint detected in
a scan from one sensor will be found in a scan from the
other sensor, and we consider scans from the same pose
and from different nearby poses. Overall, our evaluations
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Fig. 1. Several views of frame 2181 from track O of the KITTI data. (a)
Image from the left camera. (b) Point cloud from LIDAR scan, shown from
two viewpoints.The area also visible to the stereo camera is shown in green.
(c) Point cloud from stereo camera images, shown from two viewpoints.
The different properties of the two sensors are visible in the point clouds.
LIDAR scans are less dense, but they have little noise and a 360-degree
field of view. The camera images have a denser view of part of the scene,
but also significant noise along the axis toward the camera. They also have
erroneous points in the “sky,” which can challenge keypoint detectors.

indicate that NARF [5] and KPQ-SI keypoints [13] have the
best relative repeatability. The KPQ-SI detector finds many
more keypoints, but has significantly worse computational
performance on all scans. We conclude that both detectors
can work well, but the NARF keypoint detector is the best
choice if computational power or bandwidth is limited.

II. 3D KEYPOINT DETECTION

In applications where information is extracted from high-
dimensional sensor measurements such as images or LIDAR
scans of the environment, it can be helpful to use keypoints
rather than considering the entire scan, which may contain
thousands of points. Keypoints are points that contain most
of the relevant information from the measurement while
reducing the data that must be stored to a manageable size.

In feature-based SLAM methods, robot poses are recon-
structed using observations of those keypoints in several
images and the correspondences between them. Thus, an
important requirement for feature-based SLAM is features
that are both repeatable, meaning they are found in the
same place over many scans, and unique. It is common
to first extract repeatable keypoints, then compute a unique
descriptor for each keypoint and use this descriptor to find
correspondences between images. With visual sensors, such
algorithms often use FAST or ORB keypoints [14]-[17].

Several types of keypoints exist for 3D data, including
object models or point clouds from 2.5D sensors (which
make depth measurements from a single viewpoint, e.g.,

LIDAR and stereo or RGB-D cameras) [5], [6], [13], [18]-
[22]. Many were developed for object recognition, where
a 2.5D scan is matched against a known 3D model of the
object. In contrast, in feature-based SLAM, correspondences
are computed using features from individual scans. To this
end, we selected 5 keypoint detection methods, which we
now describe in detail, to compare based on the requirements
described above and their performance in other studies. Other
methods we considered are also briefly described.

A. Extensions from Image Keypoints

Common 2D keypoint detectors evaluate functions of the
image intensity. Some of those methods can be adapted to
3D point clouds, either by evaluating the same expressions
over volumetric data or by computing surface normals and
evaluating them over the surface. A volumetric model of
the scene cannot be accurately reconstructed from a 2.5D
single scan. However, normals can be computed, so methods
evaluated over surfaces are particularly applicable.

One such keypoint type is Harris corners [23]. In 2D,
Harris corners are defined at the maxima of an autocorre-
lation function that describes how similar a patch of the
image is to a slightly shifted copy of itself. This is an
efficient way to detect corners, as patches containing them
vary rapidly in both directions. In the Harris3D detector, a
3-dimensional version of Harris corners, the normal at each
point is computed by fitting a plane to nearby points, then
the same autocorrelation operator is applied on these normals
and peaks are selected as Harris3D keypoints [18].

B. Keypoints from Surface Curvature

Intrinsic Shape Signatures (ISS) are a keypoint and de-
scriptor for a region of a 3D surface. The detector finds
keypoints with a unique orientation and neighbors with large
surface normal variation in all 3 dimensions [6]. The ISS
detector did well in previous comparison studies in efficiency
and repeatability over viewpoint changes [24]-[26].

Mian et al. [13] define another keypoint detector, which
we refer to here as KPQ (KeyPoint Quality). In the KPQ
detector, points’ neighborhoods are aligned with the local
frame and keypoints are selected with the largest ratio in how
far that neighborhood patch extends along each axis. This
selects points where the surface has much more curvature
in one direction than the other. A surface is then fitted to
the neighborhood points to compute a quality measure. KPQ
uses a fixed neighborhood size, but a scale-invariant method
is also described by identifying keypoints at multiple scales.
We refer to the scale-invariant method as KPQ-SI. KPQ-SI
also performed well in previous surveys [24], [25].

C. Range Image Keypoints

Steder et al. [5] propose a very different approach. Rather
than work with the full 3D point cloud, they reduce the point
cloud to a range image by projecting it onto a spherical
camera plane located at the viewpoint and coloring each
pixel by its depth. The range image is a distorted view
of the full 360-degree surroundings. If the point cloud is



a 2.5D measurement, like the scans in SLAM scenarios,
and the origin used for the projection is the same as the
pose where the scan was collected, no information is lost in
this projection. The Normal Aligned Radial Feature (NARF)
keypoint extractor finds points in the range image which
are on stable surfaces that are not sensitive to viewpoint
changes, but are still unique [5]. Each point in the range
image is assigned an interest value, which is high when the
point’s immediate neighbors (within a fixed neighborhood)
have similar normals, but more distant neighbors have large
normal variations. Keypoints are selected at maxima of
this interest value. A descriptor is also proposed for these
keypoints, but we do not evaluate it here.

D. Keypoints we did not evaluate

Our evaluation does not include 3D keypoints that per-
formed poorly with data similar to ours in other studies or
that have requirements that are unreasonable for robots in
a SLAM system. In particular, the MeshDOG [19], Salient
Points [20], Laplace-Beltrami Scale Space [21], and Heat
Kernel Signature [22] detectors require a mesh surface to be
fitted to the point cloud. This is computationally expensive
and slow, particularly for the scans of very large areas
used in SLAM. The Local Surface Patches detector [27]
identifies points with different surface curvature from their
neighborhood, but it performed very poorly on point clouds
from laser scans in other comparison studies [24], [25].

III. RELATED WORK
While each keypoint has been analyzed for repeatability

and matching performance in the literature, the analyses
typically use different data and methods. Several studies
have directly compared different types of keypoints. Salti et
al. [24] and Tombari et al. [25] evaluated a variety of key-
point detectors for object recognition over 5 datasets. Each
dataset had 3D models of objects and scans of those objects
from different viewpoints and in scenes. They compared all
keypoint detectors described in Sec. [lI] except the NARF
detector and found that KPQ-SI, MeshDOG, and ISS had
the best performance. ISS was most efficient, but performed
poorly when the object was partially occluded. Filipe and
Alexandre [26] evaluated keypoints for object detection in
an RGB-D dataset, and also found that ISS keypoints had
the best performance. These studies used datasets with only
one sensor, so they could not evaluate matching across sensor
types, as is required for heterogeneous multi-robot SLAM.
Additionally, they evaluated matching of 3D models with
2.5D scans, which applies well to object recognition but less
so to SLAM, where models of the scene are unlikely to exist.

Yu et al. [28] compared several types of keypoint detectors
on volumetric data for object detection. They worked with
both synthetic and real data. They extended typical 2D image
keypoints like Harris corners and SURF to 3D, and found
that MSER features had the best performance but were
inefficient to compute. The conversion to occupancy grids
and evaluation over those grids can be slow, and occupancy
is difficult to determine from a 2.5D scan, so these detectors
are not appropriate for SLAM scenarios.

Kostusiak [29] evaluated 2D keypoint detectors and de-
scriptors (e.g., SURF, KAZE, ORB) in RGB-D data for
visual odometry. They used the depth channel only for 3D
positions of those keypoints, which is common in SLAM
with RGB-D cameras [30], [31]. While these detectors
perform well in RGB-D SLAM, they require image-based
sensors, which may not apply in a heterogeneous group.

Systems that perform feature-based SLAM or visual
odometry typically use 2D image keypoints [16], [17]. Most
SLAM systems without visual sensors use dense match-
ing between scans or LIDAR-specific methods like Seg-
Match [3], which are sensitive to changes in the the sensor
model. Because point clouds from different kinds of sensors
have very different properties, dense matching cannot be used
for heterogeneous sensors. To the best of our knowledge, no
comparison of 3D keypoints for SLAM or visual odometry
currently exists in the literature.

IV. METHODS

As described in Section [, we compared the 3D keypoint
detectors that were reasonable for the data and computational
limitations in heterogeneous multi-robot SLAM: Harris3D,
NARE, ISS, KPQ, and KPQ-SI. We used implementations
of Harris3D, ISS, and NARF available in the open-source
Point Cloud Library (PCL) [32]. KPQ and KPQ-SI were
implemented in C++ to operate on PCL point clouds.

We modified KPQ and KPQ-SI to better apply to SLAM.
These methods have two parts: an initial identification step
based on the keypoint’s neighborhood, followed by a filtering
step in which a mesh is fit to that neighborhood and used
to determine the keypoint’s quality. Surface fitting a set of
points is computationally intensive for large point clouds
generated by robotic sensors, particularly on embedded pro-
cessors. Instead, we use all the keypoints identified in the
first step, which is equivalent to setting the filtering threshold
to 0. Including the selection step results in fewer features
with a larger fraction repeatable, but the full implementation
may not be feasible to perform on robots in real time.
Additionally, the KPQ-SI detector requires evaluation of
keypoints at several scales. To limit computational time, we
evaluated only 3 scales. Keypoints were detected at all 3
scales. More scales may have resulted in a larger number of
keypoints, but significantly worse efficiency.

Many of the detectors we evaluate have performed well in
past comparison studies for object recognition, as described
in Sec. In object recognition, it is important to retain all
model information in order to recognize the object from any
viewpoint. However, the NARF detector works on a range
image from a particular pose, so any parts of the point cloud
obscured from that pose are lost. For that reason, the NARF
keypoint detector was not evaluated in those comparison
studies. In SLAM, however, observations are 2.5D, thus
reduction to a range image does not lose any information.
Therefore, the NARF keypoint extractor is appropriate for
SLAM applications, so it is included in our evaluation.

We evaluate keypoint repeatability for pairs of scans
observed using different sensors, from different viewpoints,



or both. Keypoints consist of only a location within the
scan, with no other identifying information. Thus, we define
keypoints in different scans to be the same point if the
Euclidean distance between their locations is less than some
search radius r. Additionally, we allow each keypoint from
a scan to have only one match in another scan. For example,
for keypoint p; in scan 1, if keypoints p5 and p{ in scan 2
both have distance less than r from p}, with p? closer, only
the one that is closer is considered a match. Thus, p} and p?
are matched and p? cannot have p} as a match.

For each keypoint type, we evaluate both absolute and
relative repeatability. Absolute repeatability gives the total
number of keypoints repeated between scans. This number
depends on the total number of keypoints detected, which
may also depend on parameters such as scales and thresholds
in the detector. A higher number here may be helpful, as
more keypoints will continue to be visible even if part
of the scene is obscured. However, a high number may
indicate lower quality keypoints, so future matching using
other methods such as descriptors may be more difficult.

Relative repeatability is the fraction of keypoints that are
repeatable. Since scans from different sensors may have very
different numbers of keypoints detected (due to different
resolutions or qualities of the underlying data), we compute
relative repeatability for both sensor types.

For all experiments, we consider only keypoints in the
region visible in both scans.

We do not evaluate the distribution of repeatable keypoints
within each scan. This is important when applying this work,
such as in a loop closure application, as well distributed
matches give better observability of relative pose. If the
keypoints are not well distributed, it might be due to inherent
properties of the sensors or asymmetries in the environment.
For example, points farther from a sensor might have more
error, making those keypoints more difficult to detect. Before
using SLAM, it would be necessary to calibrate the sensors
used to determine any regions of the scans with larger errors
and adjust the system parameters accordingly. Bias may also
be introduced when some parts of the scene have more
keypoints; this is commonly overcome by dividing the scan
into regions and searching the regions individually. While
these are important concerns in using the detected keypoints,
such an analysis of the sensors and environment is outside
the scope of this paper.

V. RESULTS
To evaluate keypoint repeatability in data representative

of robotic applications, we selected several trajectories from
the KITTI odometry dataset [12]. We selected tracks O,
2, 6, and 9, which gave a large number of frames with
varied scenery and a relatively small number of other moving
objects observed. Track O also allowed for evaluations over
different views of the same scene, as it has segments where
the same area is observed from multiple orientations.

A. Scans from same viewpoint
For each time step in the data, we have the true pose and
scans from each sensor recorded at that time. We use the
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Fig. 2. Examples of detected keypoints in frame 2181 from track 0. (a)
NAREF keypoints in the LIDAR scan (b) KPQ-SI keypoints in the LIDAR
scan (c) NARF keypoints in the stereo camera scan (d) KPQ-SI keypoints
in the stereo camera scan

TABLE I
MEAN NUMBER OF KEYPOINTS DETECTED BY EACH METHOD

Scan Type Harris | ISS | KPQ | KPQ-SI | NARF
LIDAR 92 135 130 250 71
Stereo Camera 173 168 223 318 102

LIDAR scans recorded from a Velodyne HDL-64E LIDAR,
and grayscale images from two Point Grey Flea 2 cameras.
Prior to our analysis, some preprocessing was done on the
LIDAR data so that all points in each scan are valid at
the timestamp of the corresponding pose. Additionally, the
images have already been undistorted and rectified.

For each track selected, we evaluated the keypoint re-
peatability between sensors at each frame. To do this, we
created point clouds from the stereo camera scans using the
OpenCV 3D reconstruction library to compute a disparity
map between the two images, then project each pixel to a
point in space, with depth determined by the disparity. We
then downsampled to a density similar to the LIDAR point
cloud. As shown in Fig. [T} the LIDAR and stereo camera
point clouds have very different noise and types of errors.

For each pair of scans from the same viewpoint, we de-
tected keypoints in each scan and computed the repeatability
as described in Section results in Fig. [3] are averages
over the four tracks. We evaluate repeatability as a function
of search radius, so the plots show, for a given search radius
on the x-axis, what fraction of keypoints in one scan have a
matching keypoint within that search radius in the other scan.
Examples of some detected keypoints are shown in Fig. 2]

The KPQ-SI detector finds the most features and the
NAREF detector the fewest (Table [[), resulting in quite dif-
ferent absolute repeatability (Fig. [3). Using a search radius
below 0.25m, the NARF detector finds the most repeatable
keypoints, but still only finds an average of about 5 keypoints
in each frame. For larger search radii, the KPQ-SI detector
finds a larger number of repeatable keypoints. However,
fewer keypoints may be preferred for SLAM, as the band-
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width required for robots to share keypoints and the time
required for matching increase with the number of keypoints.
While it may be possible to identify keypoints with better
chances of matching (e.g., with the KPQ mesh-fitting step),
the selection process increases computation time so tradeoffs
in selecting the best keypoints must be considered.

For a small search radius (<0.5m), NARF keypoints
have significantly higher relative repeatability than the other
keypoint detectors (Fig. [B). For larger search radii, KPQ-SI
features have better relative repeatability, but all methods
reach similar values. The best search radius depends on
factors like the quality of the point cloud from each sensor,
the localization accuracy of each detector, and the density
of keypoints. Noise and localization errors may increase the
appropriate search radius. However, too large of a search
radius results in unrelated keypoints being matched.

B. Scans from different viewpoints

In previous keypoint analyses for tasks such as object
detection, keypoints from scans of scenes are compared
against a full 3-D model. In that case, while only some
regions of the object are visible in the scan, all of those
regions will be visible in the model. In SLAM applications,
however, differing poses for two scans may lead to limited
or no overlap of the visible parts of the scene.

Comparing two scans from the same pose, as in Section [V]
[Al guarantees that the same parts of the scene are visible,
but this is not realistic for multirobot SLAM. Even if two
robots can detect a loop closure, they may still not be close
enough to assume that the scene is observed from the same
pose. To understand how the system might perform in such
scenarios, we evaluated keypoint repeatability in different
frames, selecting sections of tracks 0 and 6 for cross-frame
comparison. Based on the repeatability observed between
scans from the same sensor, we select 0.5m as a search
radius. We evaluated repeatability between scans measured
in nearby frames and in an area where the track intersected
itself. Track O is in a crowded neighborhood, with many
buildings and cars close to the street, while track 6 is on
a larger street, with any visible buildings and cars farther

Fig. 4. Sample frames from track O (top) and track 6 (bottom).

away (Fig. [] shows sample images). Thus, the point clouds
in track 6 cover a much larger area than those in track 0.

For matching between nearby frames, we chose sections of
tracks 0 and 6 where the track is straight and the vehicle has a
near-constant velocity, so difference in frame numbers can be
associated with a displacement distance. In track 0, we used
frames 0-80 and 3770-3870; the vehicle averages 1 meter
of forward motion per frame. In track 6, we used frames O-
180 and 330-615; the vehicle averages 1.2 meters of forward
motion per frame. All poses had nearly the same orientation
(cameras facing forward, in the direction of motion). We
measured absolute repeatability for scans separated by up to
20 meters in track 0 and 12 meters in track 6 (Fig. [5).

For comparison, we also computed repeatability for scans
from the same sensor in these pose pairs, shown in Fig. [6]
Though most of the keypoint detectors have not previously
been evaluated in outdoor scenes of this scale, performance
is similar to that reported in other comparison studies [25].

Over the pairs of scans with the same orientation, both
the NARF and KPQ-SI detectors find a significant number of
repeatable keypoints. The KPQ-SI detector again has a higher
absolute number, but the relative repeatabilities are similar.
As expected, the number of repeatable keypoints decreases as
the distance between the frames compared increases. How-
ever, even at a distance of 10 meters, the NARF detector still
typically finds about 10 matching keypoints, and the KPQ-SI
detector finds 20-30. This is enough to compute point cloud
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registration and indicates that loop closure would be possible
between different 3D sensors using these detectors.

In the area where the track crossed itself, we selected two
segments where the same area was visible but the vehicle had
different orientations. We used track 0, frames 2326-2340
and 3255-3269; here, the vehicle encounters an intersection
on one road and later returns to it on another road. The
average numbers of repeatable keypoints between LIDAR
scans in the first segment and stereo camera frames in the
second are given in Table [[Il While all detectors find some
repeatable keypoints, only NARF and KPQ-SI find enough to
consistently estimate relative poses and perform loop closure.

We also evaluated the computational performance of each
detector. We randomly selected 100 frames from the four
tracks and measured the mean time for each detector to find
keypoints in each type of scan; Table reports measured
time. The evaluations were performed on an Intel Xeon 3.5
GHz processor with 32 GB of RAM, and all methods were
written in C++ to interface with PCL. All detectors were
significantly slower on the LIDAR point clouds; this can be
somewhat mitigated by only searching the areas visible in
both scans. However, NARF was the only detector that could
perform keypoint detection in real time for a system making
scans at 1 Hz, a standard rate for outdoor SLAM systems.

Scan Type Harris | ISS | KPQ | KPQ-SI | NARF
LIDAR 7.77 259 | 31.0 48.4 0.22
Stereo Camera 0.24 0.51 0.68 1.05 0.05

Overall, the NARF and KPQ-SI detectors find keypoints
with the highest repeatability between scans from different
sensors. This suggests that they are good choices for het-
erogeneous SLAM applications. The NARF detector is very
efficient, but its repeatability decreases more quickly with
increased distance between poses (Fig. [5). Thus, it is likely
the best choice for most applications. If high bandwidth for
inter-robot communication and significant computing power
are available, it may be better to use the KPQ-SI detector,
particularly if keypoint quality can be estimated.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated 3D keypoint detectors for
repeatability of detected keypoints in point clouds from het-
erogeneous sensors for multi-robot SLAM. To the best of our
knowledge, this is the first comparison of 3D keypoints for
SLAM or visual odometry. We evaluated the Harris3D, ISS,
KPQ, KPQ-SI, and NARF detectors, comparing their perfor-
mance on LIDAR and stereo camera scans from the KITTI
dataset. We found that NARF and KPQ-SI had the highest
relative repeatability, with both detectors finding about 10%
repeatable keypoints in scans from different sensors in the
same pose. While KPQ-SI found more keypoints overall, it
had the lowest computational efficiency. In scans observing
the same area with different sensors and in different poses,
NARF and KPQ-SI consistently found enough matching
keypoints to perform point cloud registration and find loop
closures, while the other methods did not. For building
a feature-based heterogeneous multi-robot SLAM system,
NAREF is the best choice of keypoint if computing power
or bandwidth are limited. If they are not, KPQ-SI may be a
better choice due to the higher absolute number of keypoints.

In the future, we plan to work toward building a hetero-
geneous multi-robot SLAM system. To that end, we plan
to evaluate these same keypoints, particularly NARF, on
sensors other than those used here. A heterogeneous multi-
robot SLAM system must identify keypoint matches without
true pose information, thus we plan to evaluate keypoint
descriptors to understand if NARF descriptors work well
with hetergenous sensors or if another type of descriptor is
better. We also plan to study how NARF keypoints might be
used more effectively: for example, if many point clouds are
merged into a map, that map could be projected to a range
image with any pose as the origin. This way, keypoints could
be extracted for a pose that has not been visited.
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