
Seamless Robot Simulation Integration for Education: A Case Study

Wolfgang Hönig1, Arash Tavakoli2, and Nora Ayanian1

Abstract— We present a seamless integration of a robotics
simulator and hardware implementation, in which the same
code can be executed unchanged in simulation or on a physical
robot. We discuss the design challenges and our resulting
architecture, which seamlessly integrates V-REP, a widely used
robotics simulator, with iRobot Create 2 robots. Our approach
is easy to set up, simple to understand, yet powerful enough to
be useful beyond the classroom. We demonstrate the versatility
of our approach by describing an undergraduate-level course
in robotics that uses our framework, comparing it to a previous
course which did not use simulation tools.

I. INTRODUCTION

Simulation tools play an important role in robotics in
academia and industry because they enable early testing of
algorithms without the risk of damaging robots or infrastruc-
ture, or the risk of harming humans in the physical world.
However, simulations may require a significant time commit-
ment as they often rely on specialized software. For example,
GAZEBO [1], a widely used simulator, currently only works
with the Ubuntu operating system and is very powerful
when used in combination with the Robot Operating System
(ROS) [2]. Furthermore, simulation often executes software
that is different from the one running on the actual robot.
This can result in issues caused by software bugs which may
arise during hardware experiments and not in simulation, and
vice versa.

In an educational setting, the two aforementioned is-
sues often cause course designers to concentrate either on
simulation verification of algorithms or testing on physical
hardware, but rarely on both. Good practice in academia
and industry is to test algorithms in various settings by
iterating them in simulation first, then testing them on
physical platforms. Therefore, it would be ideal to practice
this approach in classes. To the best of our knowledge,
most courses which have attempted to seamlessly combine
simulation and physical verification have used simulation
platforms and robots which are not industry- or research-
standard—e.g., LEGO Mindstorms robot kit [3]—and are
often highly limited in capabilities and extensibility.

This paper presents an approach that seamlessly integrates
simulation and physical execution. In particular, a user can
write Python code which can be executed without any
changes both in simulation and on a robot. This approach

1Wolfgang Hönig and Nora Ayanian are with the Department of Com-
puter Science, University of Southern California, USA {whoenig,
ayanian}@usc.edu

2Arash Tavakoli is with the School of Design Engineering, Imperial
College London, UK a.tavakoli@imperial.ac.uk

This work was supported by the Viterbi School of Engineering, University
of Southern California, USA

allows students to be trained with the proper engineering
practices and showcases first-hand the advantages and lim-
itations of current robotics simulation tools. We discuss
our architecture, which combines the industrial-standard
robotics simulator V-REP together with iRobot Create 2
robots, and present the usage of our framework as part
of an undergraduate-level course on robotics taught at the
University of Southern California—CSCI-445 Introduction
to Robotics.

II. RELATED WORK

An overview of robotics for education is given in several
books [4], [5]. Unfortunately, simulation tools or the impor-
tance thereof are frequently dismissed in the books. Corell et
al. present a curriculum for teaching robotics using e-Puck
robots and the Webots simulator [6]. The simulator allows
remote-controlling the e-Puck robot and executing the same
code in simulation or on the robot.

Myro [7] is a specialized programming environment for
robots in particular for education. It supports several lan-
guages and uses robots to motivate non-computer science
majors to program. A curriculum [8] for a flipped class-
room [9] aims to bridge the theory-practice gap in controls
education via the use of a massive open online course
(MOOC) for delivery of lectures [10] and hardware/software
platform for practical tinkering. This curriculum offered
an in-house robotic simulator—Sim.I.am [11]—based on
MATLAB which enables mapping of control code both
onto simulated as well as two robotic platforms; namely,
Khepera III [12] and QuickBot [13]. In contrast to the afore-
mentioned works, our approach is more generic and can be
applied to various types of robots, and does not require any
licensing fees for the robotics simulation software used—i.e.,
V-REP non-limited educational version.

Robotic competitions such as RoboCup [14] highly mo-
tivate the use of robotics in education. USARSim [15] was
developed to support such competitions and to easily allow
to transfer code between simulation and robots. However,
the simulator is not widely used outside the RoboCup
community.

Surveys of simulation tools specifically for robotics but
not tied to education can be found in existing literature [16],
[17]. Many different tools exist for various use-cases.
GAZEBO [1], V-REP [18], and MORSE [19] appear dom-
inantly in academic conferences for various works on ground
robots, aerial robots, and manipulators. Both GAZEBO and
V-REP are also frequently used in commercial settings,
while MORSE specifically targets academia.



III. REQUIREMENTS

Simulation tools for undergraduate-level education have
special requirements compared to those used by professionals
only. In particular, the following requirements are important:

Easy Setup and Compatibility. Students must be able to
run their code on their own laptops, so that they are
able to prepare homework assignments at home and can
use the infrastructure beyond the course. Setting up the
system should only take a matter of hours, such that
it can be done within the first week. Furthermore, the
solution should be cross-platform, supporting at least
Windows, Mac, and Linux operating systems. Web-
based solutions (e.g., [20]) were excluded, since the ini-
tial setup is an important part of the learning experience.
Virtual machine-based solutions were also excluded for
the same reason, and because of poor performance
of these solutions in combination with graphics-heavy
applications such as 3D robotics simulators.

Simple. The solution needs to be simple in three different
dimensions. First, it should be simple to use, so that the
students can concentrate on the high-level algorithms
rather than low-level details. Second, it should be simple
to debug, in particular in simulation, to help students
identify and fix bugs quickly. Third, it should be possi-
ble for the students to understand the framework itself.
This not only makes it possible to extend it beyond the
course, but also deepens students’ understanding of how
the simulation and physical robots differ.

Powerful. Many tools have been proposed specifically for
education (e.g., [21], [22]). An undergraduate course
should provide sufficiently powerful tools that would
be useful beyond the course and can be used as entry-
level point into further academic research or industry
experience.

IV. ARCHITECTURE

We choose as our simulator V-REP [18], a robotics
simulator frequently used in academia and industry. It is
cross-platform, free for academic use, and supports various
different programming approaches and programming lan-
guages to interact and extend the simulator. Installers are
available for Windows, Mac, and Linux operating systems
and come with all required dependencies, simplifying the
initial setup, as required.

Robots in V-REP can be programmed using languages
including Java, Python, Lua, MATLAB, and C++. Fur-
thermore, bindings to ROS are available. A survey of our
students showed that they have a very diverse spectrum
of background knowledge and disciplines. To this end, we
decided to exclude ROS and C++ because of their com-
plexity and the difficulty of supporting different compilers
on various operating systems1. Additionally, we decided to
avoid a programming language that requires compilation;

1However, we use ROS on the same hardware platform for our research
purposes.

students often forget to recompile and therefore the ad-
ditional compilation step complicates debugging. Thus, to
accommodate the aforementioned considerations and to help
decrease the programming learning curve for those with
little programming experience, we decided to use Python. Its
simplicity in design and wide range of available integrated
development environments (IDEs) allow efficient develop-
ment and debugging.

For the hardware platform, we selected the iRobot Create
2, a refurbished vacuum cleaning robot specifically de-
signed for science, technology, engineering and mathematics
(STEM) education [23].

In the following section, we present the hardware, our
custom modifications, and our software infrastructure in
more detail. The combination of hardware and software
allows us to seamlessly integrate simulation and the physical
robot.

A. Hardware
The iRobot Create 2 robot is a differential-drive robot

with a cylindrical shape with diameter 0.35m, height 0.1m,
and weight 3.5 kg. Its robust mechanical build can withstand
crashes and accidental drops, which is important in class-
room settings. The robot can reach a translational velocity
of up to 0.5m/s. The robot’s firmware is closed-source;
however, a serial port is available, together with an API [24]
describing how to control the different actuators and how to
read sensors. The following actuators are supported:

• 2 wheels (pulse-width-modulation or velocity control)
• Motors (main brush, vacuum, and side brush)
• LEDs (four binary status indicators and one ring with

variable color and intensity)
• Display (four-digit seven-segment)
• Speaker (playing pre-programmed tones)

The following sensors are available:
• Wheel encoders
• 6 IR proximity sensors
• 4 cliff sensors (essentially downward facing IR-sensors)
• 3 IR receivers (left, right, omni-directional)
• 2 wheel-drop sensors
• 2 bump sensors
• 8 buttons
• Temperature sensor
• Power-related sensors (voltage, current, and battery ca-

pacity)
Furthermore, there is a docking station which sends out IR

beams such that the Create 2 can find the dock autonomously
for self-charging.

To be able to run software without the need for a cable
connection to a laptop, we use the small embedded computer
ODROID C1+ [25], running Ubuntu 14.04 LTS. It features an
ARM Cortex A5 1.5GHz quad-core CPU, has 1GB RAM,
boots from microSD, and has four USB ports. We attach
a WiFi USB dongle to the ODROID so that students can
connect and control the robot wirelessly.

Additional sensors and actuators can be added using the
general purpose input/output (GPIO) pins. This allowed us



(a) iRobot Create 2 with extensions. (b) Removable extension containing
added hardware components.

(c) ODROID C1+ embedded computer.

Fig. 1. iRobot Create 2 robot (a), which we equipped with a small embedded computer (c). Everything is mechanically integrated (b) as a module for
easy maintenance.

to extend the robot with an ultrasonic sensor mounted on a
servo motor to scan the robot’s surrounding.

The ODROID C1+ is directly connected to the main
battery, because the extension connector on the Create 2 has
a low current limit. We integrate all components into the vac-
uum container of the robot, making it easier to transport and
less affected by any crashes. Furthermore, connectors allow
us to quickly swap our hardware additions between robots
in order to simplify and speed up maintenance. Our final
design, the extension container, and the embedded computer
are shown in Fig. 1. The total cost per robot is approximately
350USD. The list of parts and a wiring diagram are available
online as part of the project’s documentation2.

B. Software

We integrated the iRobot Create 2 robot into V-REP as
it does not include support for this platform. Specifically,
we imported a 3D-model of the robot, added differential-
drive joints and wheels, a caster wheel, and the appropriate
dynamics parameters to the model. The default V-REP
method is to attach scripts to robots, which are written in
Lua and include the program logic (so-called child-scripts).
Instead, we use the remote API, in which V-REP acts as a
server and allows socket connections from any clients (local
or remote). The remote API includes only a subset of the
functions of the full API, but was sufficient for our use-case.
We use the official Python bindings of the remote API.

By default, the simulator controls the simulation loop.
In our case, we need full control to mimic the behavior
as accurately as possible using the same source code for
simulation and physical execution. For that reason we use
the synchronous mode, in which the next time-step of the
simulator can be triggered externally using an API call.

In order to be able to execute the same source code
either in simulation or on the robot, we use the strategy
pattern [26]. We define an abstract interface Create2 for
the robot functionality itself and an interface TimeHelper
to deal with time related issues. Both interfaces have imple-
mentations for the real robot and the simulation. We use the
factory method pattern [26] to automatically instantiate the

2http://pycreate2.readthedocs.io

desired implementation at runtime. The Create2 interface
provides functions to move the robot or to read sensors. On
the physical robot, it uses the serial port of the ODROID
and implements the API to achieve the desired behavior. In
simulation, the same behavior is created by using remote API
functions—e.g., to set the angular velocity of the wheels.

The TimeHelper interface provides two functions:
time and sleep, which return the current timestamp and
wait for the given amount of time, respectively. In simulation,
however, the notion of time is given by the simulator and not
by a clock. Depending on the computer and complexity of
the simulation, the simulator time might be faster or slower
than real-time. We leverage this behavior by advancing the
simulator time-steps in our framework, invisible to the user,
during the execution of sleep. For example, a user can
write the following script to move the robot 10 cm forward:

create.drive_direct(100, 100) # speed in mm/s
time.sleep(10)

On the real robot, the Python script will send a drive direct
command to the robot, which will execute for 10 s, until the
script exits and stops the robot at this point. In simulation,
the first line of the Python script will set the wheels velocities
and the second line will advance the simulation steps until
the simulator time reached 10 s. Depending on the computer,
this might take more or less time compared to the physical
experiment.

Additionally, we use a custom run-script to deal with
failure cases automatically and in a similar way for both
physical robot and simulation. For example, if the script
crashes or a user cancels the script, we will automatically
stop the robot or end the simulation. The UML diagram of
our approach is shown in Fig. 2. The software is available
as open-source under the permissive MIT license3.

In practice, students can first implement an algorithm on
their own computers and test it using V-REP by executing:

python3 run.py --sim <userScript>

Once the results in simulation are satisfactory, the user can
copy the scripts to the robot wirelessly and execute

3https://github.com/USC-ACTLab/pyCreate2

http://pycreate2.readthedocs.io
https://github.com/USC-ACTLab/pyCreate2


Create2

+drive_direct()
+start_stream()
+stop()

TimeHelper

+sleep()
+time()

Create2Vrep TimeHelperVrepCreate2Robot TimeHelperRobot

Factory

+createCreate2()
+createTimeHelper()

creates
creates

Fig. 2. UML diagram showing the relationship between the key classes of
our framework. The TimeHelper class is used to deal with the difference
between simulation time and real-time transparently for the user.

python3 run.py <userScript>

on a remote terminal using a secure shell (SSH).

C. Discussion

As per our requirements, our architecture is easy to set up,
simple to learn and use, and yet powerful. It is easy to set up
because it only requires V-REP and Python, both of which
come with ready-to-use installers. We found that students can
set up the required software and run examples on their own
laptops within a 3 h lab session, independent of the operating
systems they were using. Using Python as the programming
language makes code simple to understand, write, and debug.
Students can use IDEs and print statements for debugging.
Also, we use the CPython interpreter so that a change in the
code does not require recompiling. Our framework is written
in Python itself, is well documented, and uses standard
design patterns, allowing the students to understand and
ultimately extend the code for their use-cases. Furthermore,
the usage of V-REP, a simulator widely used in academia
and industry, allows the students to use their acquired domain
knowledge beyond the classroom.

V. CASE STUDY

We used our framework as part of the undergraduate-level
course CSCI-445, Introduction to Robotics, at the University
of Southern California in Spring 2016. The course requires
students to have basic programming knowledge and is open
to non-computer science majors. In Spring 2016, we had 30
enrolled students with majors including computer science,
electrical engineering, and computational neuroscience. The
course consists of lectures and 14 weekly 3 h lab sessions.
It covers the foundations of sensors, actuators, control, and
motion planning. Lab sessions supplement the lectures by
allowing the students to try the concepts covered in practice.
In particular, the focus is on understanding the material
from the algorithmic point of view, rather than electrical or
mechanical perspectives.

For most weeks, students in the lab are split into random
groups with three students per team, encouraging teamwork.
Each team must demonstrate a working solution in simu-
lation before they are allowed to use the real robots. The
lab material is posted at least a day in advance, allowing

students to finish the simulation portion of the lab at home,
if desired. Nevertheless, all labs are designed such that an
efficient team can finish everything within the designated lab
time. Students have to document their results on a worksheet.
Often they need to reflect their views on the differences
they observe between simulation and physical experiments
as part of their worksheet, helping them further understand
the importance of simulation in robotics, its advantages, and
its limitations. Students are also given the full source code
of our framework, enabling them to further understand it
in depth, and potentially to extend it for their applications
outside the scope of the course.

The schedule for the lab is shown in Table I. Most weeks
are standalone, but two lab topics span two weeks to allow
more complex developments. For example, the midterm
project combines the knowledge students learned over the
first half of the semester, requiring them to write control
software so that a robot can follow specified goal points
while avoiding unknown obstacles.

In the following, we outline some of the lab sessions in
more detail and explain the importance of simulation during
those lab topics.
Sonar Characterization. The students get a V-REP scene

with our sonar-mounted robot, but the characteristics
of the sonar sensor—e.g., field of view and range—
are intentionally specified incorrectly in the simulator.
They can use the simulator to verify that their code to
read the sonar values behaves correctly. Students then
must execute various experiments on the real robot to
characterize the sonar, including sensing range, sensing
accuracy, field of view, critical angle, and behavior when
pointing towards different surfaces. Finally, they are
asked to update the simulation model with the obtained
parameters and comment on the simulation quality. In
V-REP, the sonar is simulated by checking for an
object within a visibility cone. In practice, the values
are very noisy and depend on the reflective material,
angle of incidence, and environment structure—e.g.,
small gaps in the wall. It is important for the students
to understand this limitation so they realize the need for
sophisticated algorithms that deal with sensor noise or
abrupt measurement variations.

Wheel Encoders. Students must implement odometry to es-
timate the relative position and heading of the robot us-
ing the wheel encoders. First, students use the simulator
to verify their implementations; this greatly simplifies
debugging since the ground truth values are known
and many software iterations can be performed quickly.
They must then compare their results in simulation and
with real robots in different settings, such as several
robot speeds, various wheel encoder update rates, and
different types of flooring. The simulation shows similar
behavior to the physical robot for different robot speeds
and encoder update rates. However, the overall accuracy
of odometry is much higher in simulation because
some effects such as skidding of wheels or imperfect
geometry are not considered in simulation. Having



Week(s) Topic Description and role of simulation
1 Introduction Initial setup of hard- and software. Students learn that the same code can be run in simulation and on the robot

with simple move commands.
2 Sonar Characteriza-

tion
Comparison of sensor behavior between robot and simulation for a sonar. Students learn what typical simulation
limits are.

3 Odometry Let the robot track its position and heading using the wheel encoders. Initial work in simulation simplifies
debugging.

4 Odometry Characteri-
zation

Comparing the odometry behavior in different cases (e.g., encoder’s update rates) for simulation and physical
robot. Students learn that corner cases such as skidding are not handled in simulation.

5 Wall Following Implement a PD controller to let the robot follow a wall. The simulation helps with the initial debugging and
tuning, but the real robot has to deal with additional sensor noise and needs to be re-tuned.

6 Go To Goal Implement PID controller to go to specified goal. The available ground truth in simulation simplifies debugging
and accuracy analysis.

7, 8 Midterm Project Follow waypoints while avoiding obstacles. The simulation environment allows to easily distribute work and
improves teamwork.

9 Manipulation Forward and inverse kinematics of a robotic arm. Students use the simulation to visualize and test algorithms for
which no physical platform is available.

10, 11 Particle Filter Self-localization of the robot in a known environment. The simulator has a dual-use as visualization tool for both
simulation and physical setup.

12 Emergent Behaviors Robotic swarm behaviors. A simplified agent simulator is used, demonstrating how abstraction can help to simulate
large quantities of robots.

13 Planning (1) Search and sampling based planning is introduced. Instead of a simulator, students use different visualization tools
to verify the results.

14 Planning (2) Search based planning is used to dynamically re-plan in unknown dynamic environments. The simulator helps to
quickly try and debug various scenarios.

TABLE I. Curriculum of the lab sessions of the undergraduate-level course CS445 Introduction to Robotics thought in Spring 2016 at the University of
Southern California. Most weeks require students to demonstrate results in simulation first, before running the code on the robot. Frequently, students are
asked to compare the differences between simulation and reality. Some labs span multiple weeks for more complex assignments, where the simulation
helps students to parallelize their work.

these results side-by-side demonstrates first-hand such
simulation limitations to the students.

PID Controller. Students must implement PID controllers
to follow a wall and to go to a specified target position.
The simulation significantly aids students in imple-
menting the algorithm correctly. Furthermore, V-REP’s
integrated graphs can be used to plot data in real-time
while the simulation is running, which is less abstract as
compared to Simulink-based simulations. Therefore, the
trade-off between the P, PD, PI, and PID controllers can
be easily explored by investigating the graphs as well as
the robot’s behavior in simulation. This allows students
to gain a practical sense for tuning the controller gains,
which is both less time-consuming and less risky in
simulation. Finally, the students learn that in order to
achieve great performance in practice, the controller
gains must be fine-tuned on the physical robot.

Particle Filter. A particle filter can be used to localize a
robot in a known environment. Debugging such an
algorithm is complicated, as its state (the particles)
is large. For example, in a small map used for the
class, several hundred particles were required to achieve
good self-localization. Here, we provide students with
a way of using V-REP not only as a simulator, but
also as a visualization tool. This has the advantage that
the current state of the visualization and the robots
are perfectly synchronized and shown on top of each
other. The various particles can be shown as arrows in
the same scene. These visualization objects’ dynamics
are disabled; they therefore do not interact with the
physical robot simulation. Once the algorithm works in
simulation, the students can execute it on the robot and

Fig. 3. A test scene for the particle filter task in V-REP. The virtual
robot is controlled by a user-written Python script. The various particles are
visualized in V-REP as red arrows. The goal is to implement the particle
filter correctly such that the robot localizes itself in a known map after a
series of movement and sensing actions. The average of the current particles
is visualized using a transparent iRobot Create 2 robot.

use V-REP purely for visualization. In order to achieve
the desired behavior, we switch to the real-time mode
of V-REP and use the remote API directly from the
ODROID on-board computer to send the current state
to V-REP. This concept is similar to rviz in ROS,
but does not require additional software to be learned
or installed. A screenshot of a simulation session with
integrated visualization is shown in Fig. 3.

Planning in Dynamic Environments. Students must im-
plement logic for dynamic re-planning in dynamic en-



vironments. In particular, an initial map is given but
additional walls might appear at runtime, blocking one
of the feasible paths. The simulation platform greatly
simplifies testing, as the walls can be virtually moved
while the simulation is running. This allows the user to
try many different scenarios quickly, before moving to
the physical world.

Manipulator. One lab session includes experiments on a
manipulator, which we did not have physically avail-
able. However, we used the same framework and Python
scripting language to enable students to implement
forward and inverse kinematics for serial robotic manip-
ulator arms. Hence, students learned how to develop and
test algorithms without access to the physical robots.
Implementing the abstraction layer for an actual ma-
nipulator would allow the execution of the same code
used for the simulation on a physical robot.

Emergent Behaviors. In this lab session, students repli-
cate emergent group behaviors—such as flocking—on
a swarm of robots. Researchers in the area of multi-
robot teams often do not rely on simulation tools with
a physics engine for the verification of their algorithms
due to the associated slow runtime for simulations of
large groups of robots—e.g., groups of hundreds and
above. Instead, agent simulators with a simplified robot
model are used. To this end, we also provide students
with such a simple simulator and let them discuss as
part of their lab assignment what the advantages and
disadvantages of the different simulation tools are.

In comparison, the previous version of the course did not
use any simulation tools; instead, students executed the code
directly on the robot. If the experiment did not work as
anticipated, time-consuming trial-and-error experiments on
the robot were required to identify whether the fault was
software- or hardware-based. In case of any hardware-related
issues, the team’s progress towards understanding the algo-
rithmic side of the experiments would be stopped until the
issues were rectified. Our new seamless simulator integration
combines the best of both worlds: debugging fundamental
algorithms is simplified, and the same code—without any
changes—can be executed on the actual robots, providing
experience with physical robotic platforms. This allows
interesting side-by-side comparison of the performance of
simulated versus physical robots and teaches students how
to use and to what extent to trust their simulation results.

Several highly enthusiastic students ended up working on
the simulator in their free time, trying tasks which were
outside the scope of the course. Similarly, for the labs which
spanned over two weeks, students were able to finish the bulk
of the work outside the lab, improving teamwork and time
management. Finally, we were able to cover more material
in the same amount of time compared to the previous year,
indicating that the simulation helped students concentrate on
the algorithmic aspects of robotics, as desired.

VI. CONCLUSIONS

We present a framework that seamlessly integrates ex-
periments in simulation and on physical robots. In partic-
ular, code written in Python can be executed without any
changes on either a simulator or a physical iRobot Create
2 robot. Our approach is easy to set up and simple to
use, yet powerful since it uses tools used in industry. We
demonstrated that such an integrated simulation approach
has several advantages in a classroom setting. It simplifies
debugging, improves teamwork, allows concentration on
high-level algorithmic aspects of robotics, and ultimately
allows instructors to teach more material in the same amount
of time. Nevertheless, we do not sacrifice real hardware
experience, but rather let students experience first-hand what
the advantages and limitations of state-of-the-art robotics
simulators are.

We believe that our generic approach would be useful in
other domains as well. On the education side, the approach
can be used in K-12 education and for graduate-level courses.
In research, the technique can drastically reduce the time
needed for transitioning between simulation and implemen-
tation, for reduced training time of new lab members, or
as tool for robotics researchers with backgrounds outside of
computer science.

REFERENCES

[1] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004, pp. 2149–2154.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[3] A. Behrens, L. Atorf, R. Schwann, B. Neumann, R. Schnitzler, J. Balle,
T. Herold, A. Telle, T. G. Noll, K. Hameyer, and T. Aach, “Matlab
meets lego mindstorms—a freshman introduction course into practical
engineering,” IEEE Transactions on Education, vol. 53, no. 2, pp. 306–
317, 2010.

[4] D. P. Miller and I. R. Nourbakhsh, “Robotics for education,” in
Springer Handbook of Robotics, 2nd Ed. Springer, 2016, pp. 2115–
2134.

[5] B. S. Barker, G. Nugent, and N. Grandgenett, Robots in K-12 Educa-
tion: A New Technology for Learning. IGI Global, 2012.

[6] N. Correll, R. Wing, and D. Coleman, “A one-year introductory
robotics curriculum for computer science upperclassmen,” IEEE Tran-
sations on Education, vol. 56, no. 1, pp. 54–60, 2013.

[7] M. M. McGill, “Learning to program with personal robots: Influences
on student motivation,” ACM Transactions Computing Education,
vol. 12, no. 1, pp. 4:1–4:32, 2012.

[8] J. P. de la Croix and M. Egerstedt, “Flipping the controls classroom
around a MOOC,” in American Control Conference, 2014, pp. 2557–
2562.

[9] B. Tucker, “The flipped classroom,” Education next, vol. 12, no. 1,
2012.

[10] Coursera, “Control of mobile robots,” https://www.coursera.org/learn/
mobile-robot, website accessed: Nov. 2016.

[11] J. P. de la Croix, “Sim.i.am,” http://gritslab.gatech.edu/projects/
robot-simulator, website accessed: Nov. 2016.

[12] K-Team, “Khepera iii,” http://www.k-team.com/
mobile-robotics-products/old-products/khepera-iii, website accessed:
Nov. 2016.

[13] O’Botics, “Quickbot,” http://o-botics.org/robots/quickbot/, website ac-
cessed: Nov. 2016.

[14] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup:
The robot world cup initiative,” in International Conference on Au-
tonomous Agents. ACM, 1997, pp. 340–347.

https://www.coursera.org/learn/mobile-robot
https://www.coursera.org/learn/mobile-robot
http://gritslab.gatech.edu/projects/robot-simulator
http://gritslab.gatech.edu/projects/robot-simulator
http://www.k-team.com/mobile-robotics-products/old-products/khepera-iii
http://www.k-team.com/mobile-robotics-products/old-products/khepera-iii
http://o-botics.org/robots/quickbot/


[15] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“USARSim: a robot simulator for research and education,” in IEEE
International Conference on Robotics and Automation, 2007, pp.
1400–1405.

[16] M. Torres-Torriti, T. Arredondo, and P. Castillo-Pizarro, “Survey and
comparative study of free simulation software for mobile robots,”
Robotica, vol. 34, no. 4, pp. 791–822, 2016.

[17] A. C. Harris, “Integration of the simulation environment for au-
tonomous robots with robotics middleware,” Ph.D. dissertation, The
University of North Carolina at Charlotte, 2014.

[18] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile
and scalable robot simulation framework,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 1321–1326.

[19] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg,
P. Koch, C. Lesire, and S. Stinckwich, “Simulating complex robotic
scenarios with MORSE,” in IEEE International Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots, 2012,
pp. 197–208.

[20] The Construct Sim LTD, “The Construct,” http://www.theconstructsim.
com, website accessed: Nov. 2016.

[21] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. East-
mond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
et al., “Scratch: programming for all,” Communications of the ACM,
vol. 52, no. 11, pp. 60–67, 2009.

[22] University of California, Davis, “CSTEM Studio,” http://c-stem.
ucdavis.edu/studio/, website accessed: Nov. 2016.

[23] iRobot Corporation, “iRobot Create2,” http://www.irobot.com/
About-iRobot/STEM/Create-2.aspx, website accessed: Nov. 2016.

[24] ——, “irobot create2 open interface (oi) specification based on the
irobot roomba600,” http://www.irobotweb.com/∼/media/MainSite/
PDFs/About/STEM/Create/iRobot Roomba 600 Open Interface
Spec.pdf?la=en, website accessed: Nov. 2016.

[25] Hardkernel co., Ltd, “ODROID Documentation,” http://odroid.com/
dokuwiki/doku.php?id=en:odroid-c1, website accessed: Nov. 2016.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley,
1995.

http://www.theconstructsim.com
http://www.theconstructsim.com
http://c-stem.ucdavis.edu/studio/
http://c-stem.ucdavis.edu/studio/
http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
http://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf?la=en
http://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf?la=en
http://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf?la=en
http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1
http://odroid.com/dokuwiki/doku.php?id=en:odroid-c1

	INTRODUCTION
	RELATED WORK
	REQUIREMENTS
	ARCHITECTURE
	Hardware
	Software
	Discussion

	CASE STUDY
	CONCLUSIONS
	References

