
A Mixed Integer Programming Model for Timed Deliveries in
Multirobot Systems

Nitin Kamra and Nora Ayanian

Abstract— We present a solution that enables robots to
operate in long-duration missions with minimal interruption
for recharging or refreshing other resources. Consider a set of
deployed “task robots” that request resources (e.g. batteries)
from a distribution center, which can deploy “delivery robots”
to fulfill those requests. We address the scheduling problem with
multiple incoming time-bound requests from the task robots.
Our proposed framework incorporates priorities on working
robots that can be adjusted by a human operator during
scheduling, since mission priorities can change over time. The
framework allows a relaxed delivery schedule when available
resources are scant and permits dynamic re-routing of delivery
robots. The problem is posed as a variant of the Vehicle Routing
Problem with Time Windows, and solved as a Mixed Integer
Quadratic Program using a branch and bound based solver.
We present the specific case of a battery distribution system
and validate the results in simulation.

I. INTRODUCTION
Limited on-board power is a key challenge for mobile

robots on long duration deployments. While there has been
increasing interest in lifelong deployment of robot teams,
literature that addresses the power issue requires robots to
return to docking stations to charge or spend significant time
charging on-field, both of which can disrupt the mission.

Recent work in persistent robotics include a persistent
operation scheduling algorithm that allows Unmanned Aerial
Vehicles (UAVs) to return for recharging [1]. Mathew et al.
allow on-the-spot recharging for persistent task UAVs [2], but
assume instantaneous recharging, which is not realistic. Even
if charging took longer, this would preclude the charging
robot from serving other robots. Song et al. replace dis-
charged robots with new ones [3], significantly increasing the
number of robots required. Derenick et al. propose an energy
aware multi-robot system for coverage which alters the
team’s configuration to allow low-energy robots to return for
charging [4]. Kannan et al. have introduced the Autonomous
Recharging Problem (ARP) and propose an energy-aware
design along with static and mobile recharging stations [5].
Other works present persistent monitoring schemes, but
ignore battery exhaustion altogether [6].

Recently, hardware-only solutions for recharging and
docking mobile robots have been developed [7]–[10]. There
has also been recent work on autonomous battery swapping
mechanisms specifically for UAVs [11], [12]. We leverage
these battery swapping results to address a task scheduling
problem for a system which dispatches autonomous robots

Authors are with the Department of Computer Science,
University of Southern California, Los Angeles, CA, USA
{nkamra,ayanian}@usc.edu. N. Kamra gratefully acknowledges
support from Viterbi Graduate School Ph.D. Fellowship. This work was
partially supported by Office of Naval Research grant N00014-14-1-0734.

(the delivery robots), from a storage and planning facility (the
control center) to deliver and recover resources to and from
working robots (the task robots), that have made a request
in order to minimize mission disruption.

The idea of distributable energy was suggested by Ngo
et al. with a policy for energy sharing [13]. However, they
focused on battery sharing among robots to prolong working
duration, eventually making them return for recharging.

In this paper we consider scheduling for prioritized timed-
delivery requests with multiple capacity-limited delivery
robots, and specifically minimize total downtime for task
robots. Though we demonstrate a specific application of a
battery delivery system, our framework extends easily to all
kinds of interchangeable resources.

A. Related Work

We pose the problem as a variant of the Vehicle Routing
Problem (VRP). The dynamic VRP has been formulated with
a deterministic mixed-integer programming model as well as
with stochastic queuing theory based models. We specifically
consider a variant called the Vehicle Routing Problem with
Time Windows (VRPTW) to model this problem with a
mixed-integer programming based model [14].

Mixed-integer programming models have been used for
modeling similar problems. Mathew et al. address the VRP
for a truck with a mounted quadcopter, prove its NP-
hardness and solve it as a Generalized Traveling Salesman
Problem (TSP) [15]. Karaman et al. present a framework for
vehicle dispatch that admits complex constraints specified
with Metric Temporal Logic [16], but do not take into
account carrying capacities of delivery vehicles, enforce an
unrealistic fixed return time for recharging delivery vehicles,
and do not incorporate timed-visits. Stump et al. use the
VRPTW model for persistent surveillance with periodic
timed visits, but enforce hard constraints on visiting times
instead of penalties [17]. Unlike our approach, which allows
a relaxed delivery schedule, hard constraints can lead to a
breakdown of the system when sufficient surveillance robots
are not available. Furthermore, there is no priority for visits
and there are no provisions available for human overrides.

Another approach is to use stochastic models of the system
and queuing theory. Smith et al. model the dynamic VRP
with multiple vehicles and two classes of demands [18].
They employ a convex optimization function for delayed
deliveries, and propose a routing policy to schedule requests,
and analyze bounds on performance of the routing policy.
The approach has been extended for multiple classes of
stochastic demands, proposing a Separate Queue (SQ) policy

with merging, analyzing the stability and placing bounds on
the service fraction under conditions of heavy load [19].

The Dynamic VRP has also been solved with stochastic
demands moving on fixed straight lines for a single delivery
vehicle [20], [21]. Bopardikar et al. propose the longest
path policy to maximize the fraction of timed-requests being
served at steady-state and provide analytical lower bounds on
service fraction [22]. These stochastic approaches provide a
framework to analyze steady state performance of routing
policies but in general lack one or more of these desirable
features for actual deployment: minimizing down-time of
task robots, maximizing delivery throughput in absence of
the required number of delivery robots, modeling priorities
on task robots, and integrated human control.

B. Contributions

The major contributions of this work are:
• solve the resource delivery and recovery problem with

timed requests optimally, using multiple delivery robots
with limited on-board power and carrying capacity;

• allow a relaxed schedule (some deliveries can be
missed) when all deliveries cannot be made due to lack
of resources or delivery robots;

• enable dynamic re-routing of delivery robots enroute;
• impose relative priorities while scheduling when all task

robots are not equally important.

II. PROBLEM FORMULATION

Consider a 2-D grid with a control center at the origin
O(0, 0), m delivery robots and n task robots whose locations
are described relative to the control center. By periodically
querying the task robots, their locations and battery status
can be maintained.

New incoming delivery requests from task robots are col-
lected and added to a list of requests. Requests are processed
to keep track of “resource cycles” for robots that periodically
need resources with a fixed lifespan e.g., batteries. Such
requests can be predicted in advance by tracking the resource
life cycle. The request list from task robots containing both
actual and predicted (by tracking resource cycles) requests,
is always available in the format: [Robot_ID, Location,
Delivery_time, Priority].

We seek to generate a schedule for delivery robots to
serve the maximum number of requests possible, while both
minimizing the offset from expected delivery times and
taking task robot priorities into account.

A. Assumptions

We assume each delivery robot travels with average speed
v. Since v is used only to estimate travel time, delivery robots
may move at variable speeds as long as it approximately
maintains an average speed v. Though we assume the same
average speed for delivery robots, it is straightforward to
extend our approach to different average speeds for each
delivery robot.

The locations of the moving delivery robots are tracked
and their path is extrapolated to estimate their location at

Td Twait

T1current T2current

Td Twait

Fig. 1. Timeline of the scheduling algorithm for a single scheduling
window; T i

current marks the beginning of computation, Td is the time
for computation so that dispatch begins at T i

current + Td, Twait is the
time to wait before computing for the next (shifted) time window.

the time of the next dispatch (i.e. when computation of the
new schedule ends). Task robot locations are considered fixed
for the problem, but their locations are tracked and small
movements can be handled as pointed out in section IV. We
assume there exists at least one path from each delivery robot
to every task robot and to the control center.

Lastly we assume sufficient inventory of deliverable re-
sources available at the control center when needed.

B. Graph Representation

We build upon the Vehicle Routing Problem with Time
Windows (VRPTW) [14]. The basic idea behind VRPTW
framework is to solve a constrained optimization problem
which minimizes a penalty function for traveling path costs,
subject to the resource distribution constraints.

We introduce an optimization function to combine mini-
mizing traveling costs with penalizing untimely deliveries, in
order to incorporate delivery time constraints. The traditional
VRPTW imposes delivery timings as hard constraints, which
makes the schedule very rigid. By posing the delivery timings
as soft constraints in the optimization objective, we have
more flexibility of delaying or advancing deliveries to meet
stringent delivery times better. This also allows us to miss
a few deliveries (if needed) by incurring some penalty, but
instead serving other high priority requests on time.

Since future requests are unknown, we cannot schedule for
an infinite time horizon. Instead, we solve the optimization
problem over a small time window (of length TW) then con-
tinuously repeat the scheduling by shifting the time window
by some amount (≤ TW). The time windows are overlapping
in nature and later parts of the computed solution for a time
window are overwritten every time the window shifts. This
enables responding to unforeseen incoming requests and also
allows re-routing delivery robots between time windows.

The timeline for scheduling is shown in Fig. 1. Computa-
tion for the ith window begins at T icurrent, the schedule is
computed in duration Td, and robots dispatched at T icurrent+
Td. The system is then idle for time Twait (used to control
scheduling frequency), then repeats for the next window.
Time window length (TW) is chosen as the latest delivery
time in the available delivery list (to plan for maximum
number of requests), but can be capped at a maximum
value if the delivery list contains very late delivery timings.
Choosing Twait involves a trade-off between a small value
(gives faster response to incoming requests) and a large value
(minimizes overlapping window re-computation). We choose
Twait as the first delivery time in the delivery list.

Using locations of all m+n robots (extrapolated estimates)
and the control center at the origin O, we compute the
shortest path between each pair of locations. These could
be straight line distances or more complicated paths.

Start End

2

1

4

5

3

0s

0s
0s

350
s

350s
210s210s 240s

24
0s

300s

0s

30
0s

240s

24
0s

30
0s 300s

Fig. 2. Example Graph for a time window with two delivery robots (shaped
◦) and two task robots (shaped �); node 5 is a copy of node 4 and edge
weights represent traveling times (tij).

For task robots that need multiple deliveries in a single
window, we make copies of them at the same location but
different delivery timings. In addition, some delivery robots
may be recharging and are hence excluded from the current
window. For the current window, let M ≤ m be the number
of delivery robots available and N ≥ n be the number of
task robots (including copies).

We represent the problem as a graph G(N , E). Denoting
the set of available delivery robots as K (|K| =M), the set
of task robots (copies included) and available delivery robots
together as V (|V | =M +N) we add all elements of V to
graph G as nodes. We also add to G two nodes located at the
control center: Start (α) and End (ω). Delivery robots are
assumed to have begun at the Start node. At the end of
the window, all delivery robots must return to the End node.
This rule ensures that if a delivery robot is low on battery
or deliverable resources, it will return back to the control
center; however, the overlapping windows allow a delivery
robot to not return back after each window if charging is not
necessary. The full set of M+N+2 nodes of G is called N .

Since all paths may not be traversable bidirectionally with
the same cost, a directed edge from node i to j is represented
as (i, j) with weight tij representing travel time (tij = dij/v
where dij is the shortest distance from node i to j). All
task robots have edges leading to each other and to the End
node. The Start node has edges leading to all delivery
robots; these edges are considered pre-traversed, so that
tαk = 0,∀k ∈ K. Each delivery robot has an edge to each
task robot and to the End node. The edge to the End node is
useful to send a delivery robot directly to the control center
or leave it unused if it is already at the control center.

An example with two delivery robots (shaped ◦) and two
task robots (shaped �) is shown in Fig. 2. Node 5 is a copy
of node 4, since it needs two deliveries. Directed edges have
weights representing traveling times (tij).

C. Formulating as an Optimization problem

We now pose a single scheduling window as an opti-
mization problem on the graph G. The decision variables
(outputs) of the single window optimization are:
• xkij ∈ {0, 1}: binary value ‘1’ if kth delivery robot k ∈
K travels from ith node to jth node and ‘0’ otherwise.
The vector of all these variables is denoted x;

• ai ∈ R+: Arrival time at node i ∈ (V −K). The vector
containing all these variables is denoted a;

• di ∈ R+: Departure time from node i ∈ V . Also the
time by which delivery request of node i is considered
served. The vector of all these variables is denoted d.

Arrival and departure times are valid only for nodes being
visited by some delivery robot, else they are ignored.
We now define the quantities required for optimization:
• tij : Time to travel from node i to node j.
• τi: Time when ith task robot requires delivery.
• Ts: Minimum stay time for a delivery robot to make

a delivery; they may stay longer if needed. Can be
increased to allow small movements of task robots.

• Ck: Maximum carrying capacity of kth delivery robot.
• ck: Number of resources already delivered by kth

delivery robot during this window.
• Bk: Fraction of total battery power remaining on kth

delivery robot.
• Bkr : Average battery usage per unit distance traveled for

the kth delivery robot, as fraction of total battery power.
• pi ∈ [0, 1]: Priority of task robot i.
• TA,i: Advance delivery time for ith task robot.
• Z: A very large positive constant.
• Tstart: Time at which dispatch begins.
• TW : Length of current time window.
• tbound: Final time by which all delivery robots must

reach the End node. We set tbound = 3TW /2.
• λ: Control parameter governing the trade-off in the

objective function.
The problem can now be stated as the optimization problem:

min
x,a,d
{ftime(d) + λftravel(x, a, d)} (1)

where

ftime(d) =
∑

i∈(V−K)

pi(di − τi + TA,i)
2

ftravel(x, a, d) =
∑
k∈K

 ∑
(i,j)∈E
j 6=ω

xkij(aj − di) +
∑

(i,j)∈E
j=ω

xkijtij


subject to the constraints:∑

k∈K

∑
j∈V ∪{ω}

xkij ≤ 1, ∀i ∈ V (2)

xkαk = 1, ∀k ∈ K (3)∑
i∈V

xkiω = 1, ∀k ∈ K (4)∑
i∈{α}∪V

xkih =
∑

j∈(V−K)∪{ω}

xkhj , ∀h ∈ V, k ∈ K (5)

ai − di + Ts ≤ 0, ∀i ∈ (V −K) (6)

di−aj+ tij ≤ Z

(
1−

∑
k∈K

xkij

)
, ∀(i, j) ∈ E, j 6= ω (7)

Tstart ≤ ai ≤ Tstart + tbound, ∀i ∈ (V −K) (8)

Tstart ≤ di ≤ Tstart + tbound, ∀i ∈ V (9)

Tstart + tbound

1−∑
k∈K

∑
j∈V ∪{ω}

xkij

≤ di,∀i ∈ V (10)

dk − Z(1− xkkω) ≤ Tstart, ∀k ∈ K (11)∑
(i,j)∈E

xkij − 1 ≤ Ck − ck, ∀k ∈ K (12)

∑
(i,j)∈E

xkijB
k
r (tijv) ≤ Bk, ∀k ∈ K (13)

ftime() is the penalty function for late/early deliveries;
di is the actual delivery time and τi − TA,i is the expected
delivery time for the ith delivery robot. The square function
penalizes deviation from the expected delivery time. Any
convex penalty function can be chosen, but a square function
nicely fits our optimization problem into the Quadratic
Programming framework as we will show in Sec. III. The
advance time (TA,i) ensures delivery slightly before the
request time (τi). It is useful for resources such as batteries,
to prevent full depletion at time τi. It also shifts the quadratic
penalty function to ensure that early deliveries are penalized
less than late deliveries, since though early deliveries are
inefficient, they are not as harmful as late deliveries. The
priority pi weighs the penalty imposed by ith node to
ensure that higher priority robots impose larger penalties
for untimely deliveries. Parameters TA,i and pi are human
controllable for each time window to exert external control.
ftravel() assigns a cost to the distance traveled by the

delivery robots. For traveling to the End node, it uses tij
because aj is not defined for j = ω. λ controls the trade-off
between the two terms of the objective (1).

(2)–(5) define Path Continuity constraints for the graph.
(2) requires each node i to be visited by either exactly one
delivery robot or none. Allowing no visits provides flexibility
for a relaxed schedule when all nodes cannot be served in a
window due to limited carrying capacity or non-availability
of some delivery robots. (3) imposes the pre-traversal from
the Start node for each delivery robot. (4) requires delivery
robots to arrive at the End node (ω). (5) requires delivery
robot k to exit any node h that it enters.

(6)–(11) define Time Flow constraints for the graph. (6)
requires departure and arrival times at task robot nodes i
to differ by at least Ts, the time needed to deliver/swap a
resource. (7) requires for a traversed edge (i, j) ∈ E, that
arrival at node j and departure from node i must differ
by at least the time required to traverse the edge (tij).
Large positive constant Z ensures that if (i, j) is not being
traversed, the constraint is trivially satisfied. (8)–(9) bound
arrival and departure times. tbound > TW gives all delivery
robots sufficient time to return back to the control center. (10)
coupled with (9), ensures that departure time for a node i that
is not visited by any delivery robot is Tstart+ tbound. Since
all expected delivery times are within time window TW , this

penalizes heavily for not serving task robot i. If the node i is
being visited, this constraint is trivially satisfied. (11) ensures
that a delivery robot returning directly to the control center
starts immediately at the beginning of dispatch. Without this
constraint, delivery robots directly returning to the control
center will have their departure time set as Tstart + tbound,
resulting in stagnation when windows shift.

(12)–(13) impose Capacity constraints on the optimiza-
tion. (12) prevents a delivery robot from delivering more
batteries than it is carrying. (13) ensures delivery robots
return back to the control center before depleting their own
battery. Note that power consumption of delivery robots
is based only on traveled distance, while neglecting power
required for communication, sensing and processing.

III. SOLVING THE SCHEDULING PROBLEM
We note that the objective function is quadratic and the

constraints are purely linear in the decision variables x, a,
and d. Since a and d are continuous variables and x is a
discrete binary variable, our optimization is a Mixed Integer
Quadratic Program (MIQP).

Generally, unconstrained quadratic functions admit a
global minimum if the hessian matrix (H) of the objective
function is positive definite. But a constrained QP admits a
global minimum if the constraints restrict its domain to a
non-empty, feasible hyperplane bounded on all sides.

Though in our formulation H is indefinite, our problem
domain is fully bounded (since xkij is binary, it is bounded;
bounds on ai and di are imposed by (8) and (9)). Also
note that our constraining equations (eqs. (2)–(13)) can never
yield an empty feasible set, hence our MIQP always admits
at least one global minimum for any time window.

It is known that a QP is NP-Hard in general (unless
H is positive definite) [23] and there exist many methods
to solve constrained QPs, e.g., the Augmented Lagrangian,
Branch and bound, Conjugate Gradient, and extensions of the
Simplex algorithm. We use the SCIP (Solving Constrained
Integer Problems) implementation of the OPTI toolbox,
based on branch and bound, to solve for global optimum
of the MIQP for a single time window [24].

From a single window solution, delivery order and timing
is communicated to delivery robots at the next dispatch
time (t = Tstart); robots modify their paths accordingly.
After time Twait the window shifts, and a new schedule that
overrides the previous schedule is computed.

Since this is an NP-hard problem and we use a branch-and-
bound approach to obtain the global minimum, the worst-
case time required to solve a single window grows exponen-
tially with input size. If there are M available delivery robots
and N task robots (including copies) to serve in a window,
this formulation results in M(N2+N)+3M+2N decision
variables (joint length of vector a, d, x) and (M + N)2 +
M(N2 +N) + 11M + 6N + 1 constraints (eqs. (2)–(13)).

To compute the average computation time for a time
window as a function of M , and N , we ran 500 single
window simulations, each initialized with random values for
M , N , initial locations of task and delivery robots, delivery

−300 −200 −100 0 100 200 300

−200

−100

0

100

200

300

d = 40.0 s

a = 151.8 s
d = 2740.0 s

a = 2952.2 s
a = 2920.3 s

d = 2456.5 s

a = 2680.1 s
d = 2740.1 s

Control Center
Task Robots

t = 2740.0 s

t = 2740.0 s

t = 4840.0 st = 3890.0 s

(a) Window 1: [40, 3080] seconds

−300 −200 −100 0 100 200 300

−200

−100

0

100

200

300

d = 3080.0 s

a = 3240.1 s
d = 4840.0 s

a = 5041.6 s
d = 6180.0 s

a = 6360.3 s
a = 5892.2 s

d = 3080.0 s

a = 3260.3 s
d = 3890.0 s

a = 4140.0 s
d = 5680.1 s

Control Center
Task Robots

t = 6180.0 s

t = 3890.0 s

t = 5680.0 s

t = 4840.0 s

(b) Window 2: [3080, 6120] seconds

−300 −200 −100 0 100 200 300

−200

−100

0

100

200

300

d = 6120.0 s
a = 6120.0 s
d = 6180.0 s

a = 6381.6 s
d = 9780.0 s

a = 9940.1 s
a = 8832.2 s

d = 7589.7 s

a = 7770.0 s
d = 7830.0 s

a = 8080.0 s
d = 8620.0 s

Control Center
Task Robots

t = 8620.0 s

t = 6180.0 s

t = 9780.0 st = 7830.0 s

(c) Window 3: [6120, 9160] seconds

Fig. 3. First three schedule windows for two delivery (◦) and four task (∗) robots; delivery robot paths are marked in their respective colors; arrival and
departure time specified at each location (in seconds). (a) First time window: the first scheduled paths with skipped deliveries due to capacity constraints
(b) Second time window: next round with all task robots planned to get deliveries (c) Third time window: blue robot gets re-routed for another delivery.

0
1

2

3

4

01234567
0

10

20

30

40

50

60

#Delivery Robots (M)
#Task Robots (N)

A
vg

. c
om

pu
ta

tio
n

tim
e

fo
r

si
ng

le
 w

in
do

w
 [s

ec
on

ds
]

Fig. 4. Average computation time for one window as a function of M , N .

times, remaining capacities, and remaining battery lives,
chosen uniformly from reasonable bounded intervals for
each parameter. The program was implemented in MATLAB
R2012b on a PC with 2.5 GHz Intel Core i7 processor
running 64-bit Windows operating system with 16 GB RAM.
Computation times were averaged over windows with the
same values of (M,N) and are shown in Fig. 4 (interpolated
to non-integer values of M and N for clarity of presentation).
The results clearly demonstrate the exponential growth in
average computation time with increase in M or N .

Due to exponential running time, the current solving
approach is viable for small teams of robots, e.g. 2-3 delivery
robots and 6-7 task robots. For larger teams, an approximate
QP-solver can be used to sacrifice optimality in favor of
faster computation time for a single window.

IV. RESULTS
We now present representative simulation results for the

case of delivering batteries to ground robots using quadrotors
as delivery robots (for whom shortest paths are straight
lines). Parameters are based on the AscTec Hummingbird
quadrotor: average speed v = 2m/s, and battery life ap-
proximately 15min for continuous flight. Thus they can
travel about 1800m on full charge, leading to a fractional
battery consumption rate of Bkr = 1

1800 units/m. Note
that delivery robots land and rest without expending energy
when not moving, and can hence actually have schedule

durations longer than 900 s. Task robots are ground robots
with cameras, surveying an area around the control center
(at (0, 0)), with battery lives of 1−2 hr.

For our simulations, a single window computation can take
a maximum of Td = 40 s. Replacing a battery takes 30 s for
a delivery robot at the control center and Ts = 60 s for a
task robot on-site. Note that while we assume task robots’
locations to be fixed, this can be relaxed by extending the
on-site stay time (Ts) and updating the task robot’s location
for the following window. Also, once a delivery robot arrives
at the control center, it is not scheduled for delivery until the
next time window even if its battery has been replaced (we
plan to address this in future work).

Figure 3 shows three consecutive schedule windows with
two delivery robots (marked ◦) and four task robots (marked
∗). Colored lines with arrows show planned paths in each
window, with dotted parts being the ones which would be
overwritten by next window. All arrival (a), departure (d)
and expected delivery times (t) are noted at the respective
locations (in seconds). A time window is TW = 5000 s and
Twait = 3000 s, so windows shift by Twait + Td = 3040 s,
overwriting the remainder of the previous window. Maximum
delivery capacity of blue (green) delivery robot is three (two).

In the first window ([40 s, 3080 s] in Fig. 3(a)) both de-
livery robots have a single battery left and hence requests
from task robots at (250,−200) and (−300,−200) are not
fulfilled. This is one of the key strengths of our formulation:
if a solution does not exist for the full scheduling problem,
it allows missing deliveries by creating a relaxed plan that
minimizes the resulting downtime.

In the second window ([3080 s, 6120 s], Fig. 3(b)) the
green delivery robot has full charge and makes two deliveries
before returning. The blue delivery robot starts with a full
charge and three fresh batteries, though it has been scheduled
to deliver only two. It won’t make the second delivery before
the window shifts. All task robots are planned to receive
deliveries for this window.

Figure 3(c) shows the third round of scheduling
([6120 s, 9160 s]). Observe that the blue robot makes its
second delivery and, still having a battery left, gets re-routed
to make a third delivery before returning. This re-routing

−200 −100 0 100 200
−50

0

50

100

150

200

250

d = 2538.5 s

a = 2680.0 s
d = 2740.0 s

a = 2840.0 s

Control Center
Task Robots

t = 2740.0 s t = 2740.0 s

Fig. 5. The effect of priority on deliveries in absence of sufficient re-
sources, carrying capacity or delivery robots.

−250 −200 −150 −100 −50 0 50 100 150
−250

−200

−150

−100

−50

0

50

100

150

200

250

d = 40.0 s

a = 263.6 s
d = 1540.0 s

a = 1681.4 s

Control Center
Task Robots

t = 2740.0 s

t = 1540.0 s

Fig. 6. Counter-intuitive scheduling case to prevent task robot down-time.

across windows is another strength of our formulation and
makes better use of time and resources.

Figure 5 shows the effect of priorities, where a delivery
robot at (0, 200), with one remaining battery, chooses to
deliver to the task robot at (200, 0) over one at (−200, 0)
because of its higher priority (everything else being same).

Finally, Fig. 6 has two equal priority task robots, but the
delivery robot with a single remaining battery chooses to
serve the one farther away due to its earlier delivery time.
This occurs since the squared difference (di − (τi − TA,i))2
in eqn. (1) will impose a much higher penalty for missing
an earlier delivery request (at τi − TA,i) than a node with
a late delivery time. We justify making the earlier delivery
since a later delivery might be served after the window shift,
effectively reducing or preventing downtime for both robots.

V. CONCLUSION AND FUTURE WORK
We have proposed a framework enabling task robots to

operate in long-duration missions with minimal interruption
for recharging, and demonstrated in simulation the specific
case of a battery distribution system. The framework deploys
robots to serve timed delivery requests and minimizes down-
time of robots while taking imposed priorities into account.
It allows a relaxed delivery schedule if it is impossible to
meet all delivery requests and dynamically re-routes delivery
robots by shifting windows.

A limitation of our approach is that, to have an end point
of schedule for all delivery robots in a window, they must
return to the control center and stay there at least until the
time window shifts (regardless of battery swapping time).
We plan to address this in future work.

Other future work will include accounting for a fixed in-
ventory of resources and modeling deterioration of resources

(due to recycle and reuse) while scheduling.
REFERENCES

[1] J. Kim and J. R. Morrison, “On the concerted design and scheduling
of multiple resources for persistent UAV operations,” Journal of
Intelligent and Robotic Systems, vol. 74, no. 1-2, pp. 479–498, 2014.

[2] N. Mathew, S. Smith, and S. Waslander, “A graph-based approach to
multi-robot rendezvous for recharging in persistent tasks,” in IEEE
Intl. Conf. Robot. Autom., May 2013, pp. 3497–3502.

[3] B. D. Song, J. Kim, J. Kim, H. Park, and J. Morrison, “Persistent
uav service: An improved scheduling formulation and prototypes of
system components,” in Intl. Conf. Unmanned Aircraft Systems, May
2013, pp. 915–925.

[4] J. Derenick, N. Michael, and V. Kumar, “Energy-aware coverage con-
trol with docking for robot teams,” in IEEE/RSJ Intl. Conf. Intelligent
Robots and Systems, Sept 2011, pp. 3667–3672.

[5] B. Kannan, V. Marmol, J. Bourne, and M. Dias, “The autonomous
recharging problem: Formulation and a market-based solution,” in
IEEE Intl. Conf. Robot. Autom., May 2013, pp. 3503–3510.

[6] S. Smith, M. Schwager, and D. Rus, “Persistent monitoring of chang-
ing environments using a robot with limited range sensing,” in IEEE
Intl. Conf. Robot. Autom., May 2011, pp. 5448–5455.

[7] A. Couture-Beil and R. Vaughan, “Adaptive mobile charging stations
for multi-robot systems,” in IEEE/RSJ Intl. Conf. Intelligent Robots
and Systems, Oct 2009, pp. 1363–1368.

[8] U. Kartoun, H. Stern, Y. Edan, C. Feied, J. Handler, M. Smith,
and M. Gillam, “Vision-based autonomous robot self-docking and
recharging,” in World Automation Congress, July 2006, pp. 1–8.

[9] M. Silverman, D. Nies, B. Jung, and G. Sukhatme, “Staying alive: a
docking station for autonomous robot recharging,” in IEEE Intl. Conf.
Robot. Autom., vol. 1, 2002, pp. 1050–1055 vol.1.

[10] F. Kemper, K. Suzuki, and J. Morrison, “Uav consumable replen-
ishment: Design concepts for automated service stations,” Journal of
Intelligent & Robotic Systems, vol. 61, no. 1-4, pp. 369–397, 2011.

[11] K. Suzuki, P. Kemper Filho, and J. Morrison, “Automatic battery re-
placement system for uavs: Analysis and design,” Journal of Intelligent
& Robotic Systems, vol. 65, no. 1-4, pp. 563–586, 2012.

[12] T. Toksoz, J. Redding, M. Michini, B. Michini, J. P. How, M. Vavrina,
and J. Vian, “Automated Battery Swap and Recharge to Enable
Persistent UAV Missions,” in AIAA Infotech@Aerospace, Mar 2011.

[13] T. D. Ngo, H. Raposo, and H. Schioler, “Potentially distributable
energy: Towards energy autonomy in large population of mobile
robots,” in Intl. Symp. Computational Intelligence in Robotics and
Automation, June 2007, pp. 206–211.

[14] P. Toth and D. Vigo, Eds., The Vehicle Routing Problem. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2001.

[15] N. Mathew, S. L. Smith, and S. L. Waslander, “Optimal path planning
in cooperative heterogeneous multi-robot delivery systems,” in Intl.
Workshop on the Algorithmic Foundations of Robotics, August 2014.

[16] S. Karaman and E. Frazzoli, “Linear temporal logic vehicle routing
with applications to multi-uav mission planning,” Intl. Journal of
Robust and Nonlinear Control, vol. 21, no. 12, pp. 1372–1395, 2011.

[17] E. Stump and N. Michael, “Multi-robot persistent surveillance plan-
ning as a vehicle routing problem,” in IEEE Conf. on Automation
Science and Engineering, 2011, pp. 569–575.

[18] S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli, “Dynamic vehicle
routing with heterogeneous demands,” in Proc. IEEE Conf. on Deci-
sion and Control, 2008, pp. 1206–1211.

[19] ——, “Dynamic vehicle routing with priority classes of stochastic
demands,” SIAM J. Control and Optimization, vol. 48, no. 5, pp. 3224–
3245, 2010.

[20] S. Bopardikar, S. Smith, F. Bullo, and J. Hespanha, “Dynamic vehicle
routing with moving demands - part I: Low speed demands and high
arrival rates,” in American Control Conf., June 2009, pp. 1454–1459.

[21] S. Smith, S. Bopardikar, F. Bullo, and J. Hespanha, “Dynamic vehicle
routing with moving demands - part II: High speed demands or low
arrival rates,” in American Control Conf., June 2009, pp. 1466–1471.

[22] S. D. Bopardikar, S. L. Smith, and F. Bullo, “On dynamic vehicle
routing with time constraints,” IEEE Trans. Robotics, vol. 30, no. 6,
pp. 1524–1532, 2014.

[23] P. Pardalos and S. Vavasis, “Quadratic programming with one negative
eigenvalue is np-hard,” Journal of Global Optimization, vol. 1, no. 1,
pp. 15–22, 1991.

[24] T. Achterberg, “Scip: solving constraint integer programs,” Mathemat-
ical Programming Computation, vol. 1, no. 1, pp. 1–41, 2009.

	INTRODUCTION
	Related Work
	Contributions

	PROBLEM FORMULATION
	Assumptions
	Graph Representation
	Formulating as an Optimization problem

	SOLVING THE SCHEDULING PROBLEM
	RESULTS
	CONCLUSION AND FUTURE WORK
	References

