
IEEE INTELLIGENT SYSTEMS 1

Overview: A Hierarchical Framework
for Plan Generation and Execution

in Multi-Robot Systems
Hang Ma, Wolfgang Hönig, Liron Cohen, Tansel Uras, Hong Xu, T. K. Satish Kumar, Nora Ayanian, and

Sven Koenig
University of Southern California

Abstract—We present an overview of a hierarchical framework
for coordinating task-level and motion-level operations in multi-
robot systems. Our framework is based on the idea of using sim-
ple temporal networks to simultaneously reason about (a) prece-
dence/causal constraints required for task-level coordination and
(b) simple temporal constraints required to take some kinematic
constraints of robots into account. In the plan-generation phase,
our framework provides a computationally scalable method for
generating plans that achieve high-level tasks for groups of robots
and take some of their kinematic constraints into account. In
the plan-execution phase, our framework provides a method for
absorbing an imperfect plan execution to avoid time-consuming
re-planning in many cases. We use the multi-robot path-planning
problem as a case study to present the key ideas behind our
framework for the long-term autonomy of multi-robot systems.

Index Terms—Multi-robot planning, multi-robot systems, path
planning, plan execution.

I. INTRODUCTION

The problem of coordinating task-level and motion-level
operations for multi-robot systems arises in many real-

world scenarios. A simple example is an automated-warehouse
system where heavy robots move inventory pods in a space
inhabited by humans. The robots may have to avoid close prox-
imity to humans and each other; they may have to compete for
resources with each other; and, yet, they have to work toward
a common objective [1]. Another example is airport surface
operations where towing vehicles autonomously navigate to
aircraft and tow them to their destinations [2]. This task-level
coordination has to be done in conjunction with the motion-
level coordination of action primitives so that each robot has
a kinematically feasible plan.

The coordination of task-level and motion-level operations
for multi-robot systems requires a large search space. Current
technologies are inadequate for addressing the complexity
of the problem, which becomes even worse since we have
to take imperfections in plan execution into account. For
example, exogenous events may not be included in the domain
model. Even if they are, they can often be modeled only
probabilistically [3].

In this article, we present an overview of our hierarchical
framework for the long-term autonomy of multi-robot systems.
Our framework combines techniques from automated artificial
intelligence (AI) planning, temporal reasoning and robotics.
Figure 1 shows its architecture for a small example.

The plan-generation phase uses a state-of-the-art AI plan-
ner [4], [5] for causal reasoning about the task-level actions
of the robots, independent of their kinematic constraints to
achieve scalability. It then identifies the dependencies between
the preconditions and effects of the actions in the generated
plan and compiles them into a temporal plan graph (TPG),
that encodes their partial temporal order. Finally, it annotates
the TPG with quantitative information that captures some
kinematic constraints associated with executing the actions.
This converts the TPG into a simple temporal network (STN)
from which a plan (including its execution schedule) can be
generated in polynomial time that takes some of the kinematic
constraints of the robots into account (for simplicity called
a kinematically feasible plan in the following), namely by
exploiting the slack in the STN. The term “slack” refers to
the existence of an entire class of plans consistent with the
STN, allowing us to narrow down the class of plans to a
single kinematically feasible plan. A similar notion of slack
is well studied for STNs in general in the temporal-reasoning
community.

The plan-execution phase also exploits the slack in the STN,
namely for absorbing any imperfect plan execution to avoid
time-consuming re-planning in many cases.

We use a multi-robot path-planning problem as a case study
to present the key ideas behind our framework and demonstrate
it both in simulation and on real robots.

II. PLAN GENERATION

We use a state-of-the-art AI planner for reasoning about
the causal interactions among actions. In the multi-agent path-
finding (MAPF) problem, which is well studied in AI, robotics
and theoretical computer science, the causal interactions are
studied oblivious to the kinematic constraints of the robots. We
are given a graph with vertices (that correspond to locations)
and unit-length edges between them. Each edge connects two
different vertices and corresponds to a narrow passageway
between the corresponding locations in which robots cannot
pass each other. Given a set of robots with assigned start
vertices and targets (goal vertices), we have to find collision-
free paths for the robots from their start vertices to their targets
(where the robots remain) that minimize the makespan (or
some other measure of the cost, such as the flowtime). At
each timestep, a robot can either wait at its current vertex or



IEEE INTELLIGENT SYSTEMS 2

Start

Goal

Discretize in 
Time and Space

t=10 t=20 t=30

Account for Kinematic Constraints 
using a Simple Temporal Network
(STN)

Apply STN Solver

Apply AI Planner
(exponential)

(polynomial)

Plan Generation (Section II A+B)

Generation of Kinematically Feasible Plans (Section II C)Plan Execution (Section III)

Control

Success

Partial Dynamic Re-planning

Failure

Fig. 1. Architecture of our hierarchical framework. First, we discretize the continuous MAPF problem in time and space and use an AI planner to solve
the resulting NP-hard problem. Then, we solve the STN for the resulting discrete MAPF plan in polynomial time to generate a kinematically feasible plan
that provides guaranteed safety distances among robots under the assumption of perfect plan execution. Control uses specialized robot controllers during plan
execution to exploit the slack in the plan to try to absorb any imperfect plan execution. If this does not work, partial dynamic re-planning re-solves a suitably
modified STN in polynomial time. Only if this does not work either, partial dynamic re-planning re-solves a suitably modified MAPF problem more slowly.

traverse a single edge. Two robots collide when they are at the
same vertex at the same timestep or traverse the same edge at
the same timestep in opposite directions.

The MAPF problem is NP-hard to solve optimally or
bounded sub-optimally since it is NP-hard to approximate
within any constant factor less than 4/3 [6], called the sub-
optimality guarantee. Yet, powerful MAPF planners have
recently been developed in the AI community that can find
(optimal or bounded sub-optimal) collision-free plans for hun-
dreds of robots at the cost of ignoring the kinematic constraints
of real robots [3]–[5], [7]. We report on two of our own
contributions to such MAPF planners below.

A. Consistency and Predictability of Motion

For many real-world multi-robot systems, the consistency
and predictability of robot motions is important (especially
in work spaces shared by humans and robots), which is not
taken into account by existing MAPF planners. We have
shown that we can adapt AI planners, such as the bounded-
sub-optimal MAPF planner Enhanced Conflict-Based Search
(ECBS) [8], to generate paths that include edges from a user-
provided set of edges (called highways) whenever the sub-
optimality guarantee allows it, which makes the robot motions
more consistent and thus predictable. The highways can be an
arbitrary set of edges and thus be chosen to suit the humans.
For example, highways need to be created only in the part
of the environment where the consistency of robot motions
is important. Furthermore, highways provide only suggestions
but not restrictions. Poorly chosen highways do not make a
MAPF instance unsolvable although they can make the MAPF
planner less efficient. On the other hand, well chosen highways
typically speed up the MAPF planner because they avoid
front-to-front collisions between robots that travel in opposite
directions.

Instance ECBS(1.5) ECBS(w1)+HWY(2.0)
w1 = 1.1 w1 = 1.2 w1 = 1.5

Runtime SolCost Runtime SolCost Runtime SolCost Runtime SolCost
1 272,440 10,258 103,600 9,625 223,159 10,588
2 267,807 10,530 191,211 9,660 183,379 9,736 260,522 10,603
3 204,533 10,041
4 179,214 9,892 268,431 10,577
5 253,564 10,246 209,197 9,619 146,298 9,880 294,717 10,396
6 210,227 9,494 261,957 10,272
7 206,498 9,476 136,049 9,834
8 291,254 9,449 83,679 9,590 277,931 10,313
9 261,067 10,310 118,998 9,865 239,336 10,639

10 201,038 10,085

Table 3: Runtimes (in milliseconds) and solution costs for ECBS(1.5) and
ECBS(w1)+HWY(2.0) for the example in Figure 4. Cells are empty if an algorithm
did not terminate within a five-minute runtime limit.

We ran, for each w1 ∈ {1.1, 1.2, 1.5, 2.0},
ECBS(w1)+HWY(2.0) on each of the 10 instances. The
arrows in Figure 4 show the highway. Again, Table 3 shows
the runtimes and solution costs. ECBS(2.0)+HWY(2.0)
fails to find any solutions within the five-minute runtime
limit and is thus omitted from the table, showing again
that higher values of w1 are not necessarily beneficial.
ECBS(w1)+HWY(w2) often has lower runtimes or solution
costs or solves more instances than ECBS(w), which is
encouraging despite being anecdotal.

We experimented with different highway layouts and
parameters w1 and w2 for ECBS(w1)+HWY(w2) but no
combination dominates all others. However, these param-
eters are clearly important factors for the performance
of ECBS(w1)+HWY(w2): First, we ran, for each w2 ∈
{1.2, 1.5, 2.0, 3.0}, ECBS(1.5)+HWY(w2) on each of the
10 instances of the example in Figure 4 after reducing the
highway to the outer ring (that is, the top-most, right-most,
bottom-most and left-most arrows). The level of encourage-
ment for path finding to return paths that include the edges
of the highways and thus the solution costs increase with
w2 because the agents then tend to use the highway to cir-
cumnavigate the center rather than cut through it. Second,
if the highways do not capture the problem structures well
and thus do not help to reduce collisions among the paths,
then ECBS(w1)+HWY(w2) not only does not improve over
ECBS(w) but can have higher runtimes or solution costs or
solve fewer instances.

Instance ECBS(1.5)+HWY ring(w)
w=1.2 w=1.5 w=2 w=3

RunTime SolCost RunTime SolCost RunTime SolCost RunTime SolCost
1 253,923 10,653 177,171 11,059 276,075 11,354
2 197,154 11,067 258,463 11,098 240,897 11,707
3 244,781 10,856 175,048 11,161 271,442 11,414
4 241,583 11,631 172,725 11,319
5 265,795 11,239 186,265 11,152 200,102 11,363
6 266,169 10,840 294,468 11,308 247,199 11,133
7
8 252,721 10,595 251,333 11,150
9 202,411 11,447 294,624 11,245
10 269,460 11,115

Table 4: Runtimes (in milliseconds) and solution costs for ECBS(1.5)+HWY(w2) for
the example in Figure 4, where the highway consists of the outer ring only. Cells are
empty if an algorithm did not terminate within a five-minute runtime limit.

We also ran CBS+HWY(w) but it fails to terminate
within the five-minute runtime limit on all Kiva-like in-
stances regardless of the highway layout. While the high-
ways provide good guidance to move agents in the corri-
dors, CBS+HWY(w) still has to find collision-free paths for

A
re
a1

A
re
a2

Figure 4: Kiva-like domain on which we compare ECBS(w) and
ECBS(w1)+HWY(2.0).

150 agents inside Area1 and Area2. In those areas, CBS has
less flexibility than ECBS(w) to avoid collisions by moving
agents around other agents, which could explain why it fails
to find solutions within the runtime limit.

Conclusions
We presented a new bounded-suboptimal MAPF approach
that takes advantage of additional inputs that represent a
highway and a parameter w. It uses the highway to de-
rive new w-admissible heuristic values that encourage path
finding to return paths that include the edges of the high-
way. The level of encouragement increases with w. Our
new bounded-suboptimal variants of CBS and ECBS(w),
called CBS+HWY(w) and ECBS(w1)+HWY(w2), encour-
age a global behavior of the agents that avoids collisions.
On the theoretical side, we developed a simple approach
that uses highways for MAPF and provides suboptimality
guarantees. On the experimental side, we demonstrated that
ECBS(w1)+HWY(w2) can decrease the runtimes and so-
lution costs of ECBS(w) in Kiva-like domains with many
agents if the highway captures the problem structure well.

In future work, we plan to develop approaches that de-
termine good highways automatically, investigate whether
inflating the edge costs of the given graph (by increasing
the costs of highway edges to w) in addition to inflating
the heuristic values provides additional benefits, figure out
whether penalizing movement costs against highway edges
(similar to direction maps (Jansen and Sturtevant 2008))
helps to improve the performance of our MAPF approaches
while continuing to provide suboptimality guarantees, ex-
tend ECBS(w1)+HWY(w2) to split the user-provided sub-
optimality bound w dynamically between w1 and w2 (sim-
ilar to how ECBS(w) splits the suboptimality bound w dy-
namically between the high-level and low-level searches),
and explore highways in the context of other MAPF algo-
rithms, such as M* and inflated M*.

Acknowledgments
We thank Maxim Likhachev and Michael Phillips for help-
ful discussions. We also thank Ariel Felner, Guni Sharon,
and Maxim Barer for their CBS and ECBS(w) source code,
which we used in our experiments. Our research was sup-
ported by NSF under grant numbers 1409987 and 1319966.
The views and conclusions contained in this document are

Fig. 2. Environment of a simulated automated-warehouse system where robots
need to swap sides from Area1 to Area2 and vice versa. The red arrows
show user-suggested edges to traverse (called highways). Highways make the
resulting plan more predictable and speed up planning.

Our version of the ECBS planner with highways either
inflates the heuristic values or the edge costs non-uniformly in
a way that encourages path finding to return paths that include
the edges of the highways [9]. For example, we can place
highways in an automated-warehouse system along the narrow
passageways between the storage locations as shown by the
red arrows in Figure 2. We have also developed an approach
for learning good highways automatically [4]. It is based on
the insight that solving the MAPF problem optimally is NP-
hard but computing the minimum-cost paths for all robots
independently is fast, by employing a graphical model that
uses the information in these paths heuristically to generate
good highways automatically.

B. Target Assignment and Path Finding

For the MAPF problem, the assignments of robots to targets
are pre-determined, and robots are thus not exchangeable. In
practice, however, the assignments of robots to targets are
often not predetermined. For example, consider two robots
in an automated-warehouse system that have to deliver two



IEEE INTELLIGENT SYSTEMS 3

A B

E F G H I

C D

Fig. 3. Left: TAPF instance with two teams: Team 1 (in pink) and Team
2 (in green). The circles on the left are robots. The circles in light colors
on the right are targets given to the team of the same color. Right: Graph
representation of the TAPF instance. Team 1 consists of a single robot with
start vertex A and target H . Team 2 consists of two robots with start vertices
E and F , respectively, and targets D and I .

inventory pods to the same packing station. It does not matter
which robot arrives first at the packing station, and their
places in the arrival queue of the packing station are thus
not pre-determined. We therefore define the combined target
assignment and path finding (TAPF) problem for teams of
robots as a combination of the target-assignment and path-
finding problems. The TAPF problem is a generalization of
the MAPF problem where the robots are partitioned into
equivalence classes (called teams). Each team is given the
same number of unique targets as there are robots in the
team. We have to assign the robots to the targets and find
collision-free paths for the robots from their start vertices to
their targets in a way such that each robot moves to exactly
one target given to its team, all targets are visited and the
makespan is minimized. Any robot in a team can be assigned
to any target of the team, and robots in the same team are
thus exchangeable. However, robots in different teams are not
exchangeable. Figure 3 shows a TAPF instance with two teams
of robots.

The TAPF problem is NP-hard to solve optimally or
bounded sub-optimally for more than one team [6]. TAPF
planners have two advantages over MAPF planners: 1. Optimal
TAPF plans often have smaller makespans than optimal MAPF
plans for TAPF instances since optimal TAPF plans optimize
the assignments of robots to targets. 2. State-of-the-art TAPF
planners compute collision-free paths for all robots on a team
very fast and thus often scale to a larger number of robots than
state-of-the-art MAPF planners. We have developed the opti-
mal TAPF planner Conflict-Based Min-Cost Flow (CBM) [5],
that combines heuristic search-based MAPF planners [10] and
flow-based MAPF planners [11] and scales to TAPF instances
with dozens of teams and hundreds of robots.

C. Generation of Kinematically Feasible Plans

MAPF/TAPF planners generate plans using idealized mod-
els that do not take the kinematic constraints of actual robots
into account. For example, they gain efficiency by not tak-
ing velocity constraints into account and instead assuming
that all robots always move with the same nominal speed
in perfect synchronization with each other. However, it is
communication-intensive for robots to remain perfectly syn-
chronized as they follow their paths, and their individual
progress will thus typically deviate from the plan. Two robots
can collide, for example, if one robot already moves at
large speed while another robot accelerates from standstill.

Robot t = 1 t = 2 t = 3 t = 4
1 (in Team 1) A → B B → F F → G G → H
2 (in Team 2) E → F F → G G → H H → I
3 (in Team 2) F → G G → H H → C C → D

A1
0 B1

1 F 1
2 G1

3 H1
4

E2
0 F 2

1 G2
2 H2

3 I24

F 3
0 G3

1 H3
2 C3

3 D3
4

A1
0 B1

1 F 1
2 G1

3 H1
4

E2
0 F 2

1 G2
2 H2

3 I24

F 3
0 G3

1 H3
2 C3

3 D3
4

Fig. 4. Top: TAPF plan produced by the optimal TAPF planner CBM for the
TAPF instance in Figure 3. Middle: TPG for the TAPF plan. Each node lji
in the TPG represents the event “robot j arrives at vertex l” at timestep i.
The arcs indicate temporal precedences between events. Bottom: Augmented
TPG.

Slowing down all robots results in large makespans and is
thus undesirable.

We have thus developed MAPF-POST, a novel approach
that makes use of a simple temporal network (STN) [12] to
postprocess a MAPF/TAPF plan in polynomial time and create
a kinematically feasible plan [13], [14]. MAPF-POST utilizes
information about the edge lengths and maximum translational
and rotational velocities of the robots to translate the plan
into a temporal plan graph (TPG) and augment the TPG with
additional nodes that guarantee safety distances among the
robots. Figure 4 shows an example. Then, it translates the
augmented TPG into an STN by associating bounds with arcs
in the augmented TPG that express non-uniform edge lengths
or velocity limits (due to kinematic constraints of the robots
or safety concerns). It then obtains an execution schedule
from the STN by minimizing the makespan or maximizing
the safety distance via graph-based optimization or linear
programming. The execution schedule specifies when each
robot should arrive in each location of the plan (called arrival
times). The kinematically feasible plan is a list of locations
(that specify way-points for the robots) with their associated
arrival times. See [14] for more details.

III. PLAN EXECUTION

The robots will likely not be able to follow the execution
schedule perfectly, resulting in plan deviations. For example,
our planner takes velocity constraints into account but does not
capture higher-order kinematic constraints, such as accelera-
tion limits. Also, robots might be forced to slow down due to
unforeseen exogenous events, such as floors becoming slippery
due to water spills. In such cases, the plan has to be adjusted
quickly during plan execution.

Frequent re-planning could address these plan deviations
but is time-consuming (and thus impractical) due to the NP-
hardness of the MAPF/TAPF problem. Instead, control uses
specialized robot controllers to exploit the slack in the plan



IEEE INTELLIGENT SYSTEMS 4

to try to absorb any imperfect plan execution. If this does
not work, partial dynamic re-planning re-solves a suitably
modified STN in polynomial time. Only if this does not
work either, partial dynamic re-planning re-solves a suitably
modified MAPF problem more slowly.

A. Control

A robot controller takes the current state and goal as input
and computes the motor output. For example, the state of a
differential drive robot can be its position and heading, and
the motor output is the velocities of the two wheels. The
goal is the execution schedule, assuming a constant movement
velocity between two consecutive way-points (called the con-
stant velocity assumption). Robots cannot execute such motion
directly because they cannot change their velocities instanta-
neously and might not be able to move sideways. The actual
safety distance during plan execution is thus often smaller
than the one predicted during planning, which is why we
recommend to maximize the safety distance during planning
rather than the makespan. We use robot controllers that try to
minimize the effect of the above limitations. For differential
drive robots, we use the fact that turning in place is often much
faster than moving forward. Furthermore, we adjust the robot
velocities dynamically based on the time-to-go to reach the
next way-point. It is especially important to monitor progress
toward locations that correspond to nodes whose slacks are
small. Robots could be alerted of the importance of reaching
these bottleneck locations in a timely manner. Similar control
techniques can be used for other robots as well, such as drones,
as long as no aggressive maneuvers are required.

B. Partial Dynamic Re-planning

If control is insufficient to achieve the arrival times given
in the execution schedule, we adjust the arrival times by re-
solving a suitably modified STN, resulting in a new execution
schedule. Only if this does not work either, we re-solve a
suitably modified MAPF problem, resulting in a new kinemat-
ically feasible plan. If probabilistic models of delays and other
deviations from the nominal velocities are available, they could
be used to determine the probabilities that each location will
be reached in a certain time interval and trigger re-planning
only if one or more of these probabilities become small [13].

IV. EXPERIMENTS

We have implemented our approach in C++ using the boost
library for advanced data structures, such as graphs. Experi-
ments can be executed on three abstraction levels, namely (a)
an agent simulation, (b) a robot simulation and (c) real robots:

• The agent simulation uses the constant velocity assump-
tion and is fast. It can be used to verify the code and
create useful statistics for the runtime, minimum distance
between any two robots and average time until any robot
reaches its target, among others. It can also be used
for scalability experiments with hundreds of robots in
cluttered environments.

Fig. 5. Simulated automated-warehouse environment. The in-set in the top-
left corner shows an overhead view. The robots are at different pick-up
locations and need to deliver the color-coded boxes to the left and right side,
respectively.

• The robot simulation adds realism because it uses a
physics engine (instead of the constant velocity assump-
tion) and realistic robot controllers for the simulated
robots to follow the execution schedule. We use V-REP
as robot simulation for differential drive robots, robots
with omni-directional wheels, flying robots and spider-
like robots.

• Real robots are the ultimate testbed. We use a team of
eight iRobot Create2 differential drive robots [14].

In the following, we discuss two example use cases on a 2.1
GHz Intel Core i7-4600U laptop computer with 12 GB RAM.
Each example is solved within 10 seconds of computation time
and also shown in our supplemental video at http://idm-lab.
org/project-p.html.

A. Automated Warehouse
In the automated-warehouse use case, we model two robot

teams. The first team consists of ten KUKA youBot robots,
which are robots with omni-directional wheels capable of
carrying (only) small boxes. The second team consists of
two Pioneer P3DX robots, which are differential-drive robots
capable of carrying (only) large boxes. The robots have to
pick up small and large color-coded boxes and bring them to
a target of the same color. We split the task into two parts.
First, each robot has to move to an appropriately sized box
and pick it up. Second, it has to move to a target of the same
color. The first part is a TAPF instance with two teams, one
for each robot type. The second part is a TAPF instance with
four teams, one for each color.

We use the robot simulation on a 2D grid. Figure 5 shows a
screen-shot after the first part has already been executed, and
the robots are at different pick-up locations. The KUKA robots
use their grippers to pick small boxes from shelves while the
Pioneer robots receive the large boxes from a conveyor belt.
The robots then need to move to the targets on the left and
right side of the warehouse, respectively.

B. Formation Changes
Formations are useful for convoys, surveillance operations

and artistic shows. The task of switching from one formation

http://idm-lab.org/project-p.html
http://idm-lab.org/project-p.html


IEEE INTELLIGENT SYSTEMS 5

Fig. 6. Simulated formation-change environment. 32 quadcopters start inside
the glass building at the bottom of the picture and need to coordinate the
usage of the four exit doors in order to create the depicted goal formation
spelling the letters U – S – C.

to another, perhaps in a cluttered environment, is a TAPF
problem. In the formation-change use case, we model a team
of 32 identical quadcopters that start in a building with five
open doors. The robots have to spell the letters U – S – C
outside the building, which is a special TAPF instance where
all robots are exchangeable (also called an anonymous MAPF
instance [11]).

We use the robot simulation on a 3D grid. Figure 6 shows
a screen-shot of the goal formation.

V. CONCLUSIONS

We presented an overview of our hierarchical framework for
coordinating task-level and motion-level operations in multi-
robot systems using the multi-robot path-planning problem
as a case study. We use a state-of-the-art AI planner for
causal reasoning. The AI planner exploits the problem struc-
ture to address the combinatorics of the multi-robot path-
planning problem but is oblivious to the kinematic constraints
of the robots. We make the plan kinematically feasible by
identifying the causal dependencies among its actions and
embedding them in an STN. We then use the slack in the
STN to create a kinematically feasible plan and absorb any
imperfect plan execution to avoid time-consuming re-planning
in many cases. For more information on our research, see
http://idm-lab.org/project-p.html.

ACKNOWLEDGMENTS

Our research was supported by ARL under grant number
W911NF-14-D-0005, ONR under grant numbers N00014-14-
1-0734 and N00014-09-1-1031, NASA via Stinger Ghaffarian
Technologies and NSF under grant numbers 1409987 and
1319966. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies or the U.S.
government.

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI Magazine, vol. 29,
no. 1, pp. 9–20, 2008.

[2] R. Morris, C. Pasareanu, K. Luckow, W. Malik, H. Ma, T. K. S. Kumar,
and S. Koenig, “Planning, scheduling and monitoring for airport surface
operations,” in AAAI-16 Workshop on Planning for Hybrid Systems,
2016.

[3] H. Ma, T. K. S. Kumar, and S. Koenig, “Multi-agent path finding with
delay probabilities,” in AAAI Conference on Artificial Intelligence, 2017,
pp. 3605–3612.

[4] L. Cohen, T. Uras, T. K. S. Kumar, H. Xu, N. Ayanian, and S. Koenig,
“Improved solvers for bounded-suboptimal multi-agent path finding,”
in International Joint Conference on Artificial Intelligence, 2016, pp.
3067–3074.

[5] H. Ma and S. Koenig, “Optimal target assignment and path finding for
teams of agents,” in International Conference on Autonomous Agents
and Multiagent Systems, 2016, pp. 1144–1152.

[6] H. Ma, C. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-
agent path finding with payload transfers and the package-exchange
robot-routing problem,” in AAAI Conference on Artificial Intelligence,
2016, pp. 3166–3173.

[7] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” in International
Conference on Autonomous Agents and Multiagent Systems, 2017, pp.
837–845.

[8] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Annual Symposium on Combinatorial Search, 2014, pp.
19–27.

[9] L. Cohen, T. Uras, and S. Koenig, “Feasibility study: Using highways
for bounded-suboptimal multi-agent path finding,” in Annual Symposium
on Combinatorial Search, 2015, pp. 2–8.

[10] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[11] J. Yu and S. M. LaValle, “Multi-agent path planning and network flow,”
in Algorithmic Foundations of Robotics X, Springer Tracts in Advanced
Robotics, 2013, vol. 86, pp. 157–173.

[12] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial Intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[13] W. Hönig, T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian,
and S. Koenig, “Multi-agent path finding with kinematic constraints,” in
International Conference on Automated Planning and Scheduling, 2016,
pp. 477–485.

[14] W. Hönig, T. K. S. Kumar, H. Ma, N. Ayanian, and S. Koenig,
“Formation change for robot groups in occluded environments,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2016, pp. 4836–4842.

http://idm-lab.org/project-p.html


IEEE INTELLIGENT SYSTEMS 6

Hang Ma is a Ph.D. student in the Department of Computer Science at the
University of Southern California. Contact him at hangma@usc.edu.

Wolfgang Hönig is a Ph.D. student in the Department of Computer Science
at the University of Southern California. Contact him at whoenig@usc.edu.

Liron Cohen is a Ph.D. student in the Department of Computer Science at
the University of Southern California. Contact him at lironcoh@usc.edu.

Tansel Uras is a Ph.D. student in the Department of Computer Science at
the University of Southern California. Contact him at turas@usc.edu.

Hong Xu is a Ph.D. student in the Department of Physics and Astronomy at
the University of Southern California. Contact him at hongx@usc.edu.

T. K. Satish Kumar is an artificial intelligence researcher in the Department
of Computer Science at the University of Southern California. Contact him
at tkskwork@gmail.com.

Nora Ayanian is an assistant professor in the Department of Computer Sci-
ence at the University of Southern California. Contact her at ayanian@usc.edu.

Sven Koenig is a professor in the Department of Computer Science at the
University of Southern California. Contact him at skoenig@usc.edu.


	Introduction
	Plan Generation
	Consistency and Predictability of Motion
	Target Assignment and Path Finding
	Generation of Kinematically Feasible Plans

	Plan Execution
	Control
	Partial Dynamic Re-planning

	Experiments
	Automated Warehouse
	Formation Changes

	Conclusions
	References
	Biographies
	Hang Ma
	Wolfgang Hönig
	Liron Cohen
	Tansel Uras
	Hong Xu
	T. K. Satish Kumar
	Nora Ayanian
	Sven Koenig


