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Abstract— We describe a method for formation-change tra-
jectory planning for large quadrotor teams in obstacle-rich
environments. Our method decomposes the planning problem
into two stages: a discrete planner operating on a graph repre-
sentation of the workspace, and a continuous refinement that
converts the non-smooth graph plan into a set of Ck-continuous
trajectories, locally optimizing an integral-squared-derivative
cost. We account for the downwash effect, allowing safe flight in
dense formations. We demonstrate the computational efficiency
in simulation with up to 200 robots and the physical plausibility
with an experiment with 32 nano-quadrotors. Our approach
can compute safe and smooth trajectories for hundreds of
quadrotors in dense environments with obstacles in a few
minutes.

I. INTRODUCTION

Trajectory planning is a fundamental problem in multi-
robot systems. Given a set of robots with known initial
locations and a set of goal locations, the task is to find a
one-to-one goal assignment and a set of continuous functions
that move each robot from its start position to its goal, while
avoiding collisions and respecting dynamic limits. Trajectory
planning is a core subproblem of various applications includ-
ing search-and-rescue, inspection, and delivery. In this work
we address the unlabeled case; in the labeled case the goal
assignment is given.

A large body of work has addressed this problem with
varied discrete and continuous formulations. However, no
existing solution simultaneously satisfies the goals of com-
pleteness, physical plausibility, optimality in time or energy
usage, and good computational performance. In this work,
we present a method that attempts to balance these goals.

Our method uses a graph-based planner to compute a
solution for a discretized version of the problem, and then
refines this solution into smooth trajectories in a separate,
decoupled optimization stage. We directly take the downwash
effect of quadrotors into account, preserving safety during
dense formation flights. Furthermore, our method is complete
with respect to the resolution of the discretization, and lo-
cally optimal with respect to an energy-minimizing integral-
squared-derivative objective function. We also present an
anytime iterative refinement scheme that improves the trajec-
tories within a given computational budget. We support user-
specified smoothness constraints and provide simulations
with up to 200 robots and a physical experiment with 32
quadrotors, see Fig. 1.
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Fig. 1. Long exposure of 32 Crazyflie nano-quadrotors flying through a
wall with windows, viewed from the edge of the wall.

II. RELATED WORK

A simple approach to multi-robot motion planning is to
repurpose a single-robot planner and represent the Cartesian
product of the robots’ configuration spaces as a single
large joint configuration space [1]. Robot-robot collisions are
represented as configuration-space obstacles. However, the
high-dimensional search space is computationally infeasible
for large teams.

Many works have approached the problem from a graph
search perspective [2], [3]. These methods are adept at
dealing with maze-like environments and scenarios with high
congestion. Some represent the search graph implicitly [4],
so they are not always restricted to a predefined set of
points in configuration space. However, directly interpreting
a graph plan as a trajectory results in a piecewise linear
path, requiring the robot to fully stop at each graph vertex
to maintain dynamic feasibility. It is possible to use these
planners to resolve ordering conflicts and refine the output
for execution on robots [5].

Some authors have solved the formation change problem
in a continuous setting [6], [7], but methods are often tightly
coupled, solving one large optimization problem in which
the decision variables define all robots’ trajectories. These
approaches are typically demonstrated on smaller teams and
do not scale up to the size of team in which we are interested.
Others decouple the problem but do not support the level of
smoothness in our solution [8], and the authors do not show
results on large teams. The method of [9] is computationally
fast, but offsets the different trajectories in time, resulting in
much longer time durations. Velocity profile methods [10]
handle kinodynamic constraints well but are not able to fully
exploit free space in the environment. Collision-avoidance
approaches [11], [12] let each robot plan its trajectory inde-
pendently and resolve conflicts in real time when impending
collisions are detected. These methods scale well, and their



robustness against disturbances is appealing. However, they
do not provide any means to optimize the trajectories for
objectives such as time or energy use, and they are poorly
suited to problems in maze-like environments.

Spline-based refinement of waypoint plans was described
in [13] and [14]. Our method builds upon these works
by adding support for three-dimensional ellipsoidal robots,
environmental obstacles, and an anytime refinement stage
to further improve the plan after generating an initial set
of smooth trajectories. We demonstrate that our iterative
refinement produces trajectories with significantly smoother
dynamics.

III. APPROACH

We start by introducing the robot model, which is required
to model the downwash effect. We then formalize the prob-
lem statement and outline our approach. In later sections, we
will discuss each part of our approach in detail.

A. Robot Model

As aerial vehicles, quadrotors have a six-dimensional
configuration space. However, as shown in [15], quadrotors
are differentially flat in the flat outputs (x, y, z, ψ), where
x, y, z is the robot’s position in space and ψ its yaw angle
(heading). Differential flatness implies that the control inputs
needed to move the robot along a trajectory in the flat outputs
are algebraic functions of the flat outputs and a finite number
of their derivatives. Furthermore, in many applications, a
quadrotor’s yaw angle is unimportant and can be fixed at
ψ = 0. We therefore focus our efforts on planning trajectories
in three-dimensional Euclidean space.

While some multi-robot planning work has considered
simplified dynamics models such as kinematic agents [5]
or double-integrators [6], our method produces trajectories
with arbitrary smoothness up to a user-defined derivative.
This goal is motivated by [15], where it was shown that
a continuous fourth derivative of position is necessary for
physically plausible quadrotor trajectories, because it ensures
that the quadrotor will not be asked to change its motor
speeds instantaneously.

Rotorcraft generate a large, fast-moving volume of air
underneath their rotors called downwash. The downwash
force is large enough to cause a catastrophic loss of stability
when one rotorcraft flies underneath another. We model
downwash constraints by treating each robot as an axis-
aligned ellipsoid of radii 0 < rx = ry � rz , illustrated in
Fig. 2. Empirical data collected in [16], [17] support this
model. The set of points representing a robot at position
q ∈ R3 is given by

E(q) = {Ex+ q : ‖x‖2 ≤ 1} (1)

where E = diag(rx, ry, rz). The collision-avoidance con-
straint between robots located at p, q ∈ R3 is given by

‖E−1(p− q)‖2 ≥ 2. (2)

Fig. 2. Axis-aligned ellipsoid model of robot volume. Tall height prevents
downwash interference between quadrotors.

B. Problem Statement

Consider a team of N robots in a bounded environment
containing convex obstacles O1 . . .ONobs

. Boundaries of the
environment are defined by a convex polytope W . The free
configuration space for a single robot is thus given by

F = (W \ (
⋃
hOh)) � E(0) (3)

where � denotes the Minkowski difference.
We are given a start position for each robot si ∈ F and

a set of goal positions G ⊂ F , |G| = N . The start and goal
inputs must satisfy the collision constraint (2) for all robot
pairs. We seek the following:
• An assignment of each robot to a goal position
gφ(i) ∈ G, where φ is a permutation of 1 . . . N

• The total time duration T ∈ R>0 until the last robot
reaches its goal

• For each robot ri, a trajectory f i : [0, T ] 7→ F where
f i(0) = si, f i(T ) = gφ(i), and f i must be continuous
up to a user-specified parameter C:

dc

dtc
f i(t) continuous for all c ∈ {1 . . . C}. (4)

Additionally, we require that the collision-avoidance
constraint (2) is satisfied at all times for all pairs of
robots.

In the following, we present an efficient solution to the
subclass of problems where all si and gi are positions in an
orthogonal grid and obstacles are cubes within that grid.

C. Overview

Our approach decomposes the formation change problem
into two steps: Discrete Planning and Continuous Refine-
ment. Discrete planning solves the goal assignment problem
(generating φ) and computes a timed sequence of waypoints
for each robot in a graph approximation of the environment.
Continuous refinement uses the discrete plan as a starting
point to compute a set of smooth trajectories satisfying user-
supplied smoothness constraints.

We note that a major benefit of our method is its ability
to use different discrete planners. For example, it would be
possible to use a discrete planner for planning problems
where the goal assignment is fixed a-priori, or where robots
are split into smaller groups.



IV. DISCRETE PLANNING STAGE

The discrete planning stage works with a grid discretiza-
tion of the environment. We assume that the robots’ start and
goal locations are vertices of the underlying graph.

A. Overview

The discrete planning stage computes the goal assign-
ment φ and a path pi for each robot composed of a sequence
of K + 1 (time, position) pairs:

pi = (t0, x
i
0), (t1, x

i
1), . . . , (tK , x

i
K) (5)

where 0 = t0 < t1 < · · · < tK = T , xik ∈ F , xi0 = si, and
xiK = gφ(i). In between waypoints (tk, x

i
k) and (tk+1, x

i
k+1),

we assume that robot i travels on the line segment between
xik and xik+1, but we do not make any assumptions about
the velocity profile of the robot along that path. We denote
this line segment by `ik.

We require that the discrete planner supplies a plan that
satisfies the ellipsoid collision-avoidance constraint (2) for all
possible identical velocity profiles. We also require all robots
to share the same sequence of waypoint times t0 . . . tK .

In the following, we discuss one specific discrete planner
that simultaneously computes the goal assignment φ and
produces waypoint sequences pi that minimize K. This
planner operates in a grid environment and assumes fixed
timesteps, i.e. tk+1 − tk is equal for all k. Furthermore, we
require the grid size to be greater than 2rx. A robot can
either move to an adjacent grid cell or stay at its current
location each step. At all timesteps, and during movements,
the planner must ensure that the collision constraints are
fulfilled. With fixed timesteps, the number of waypoints
K corresponds to the time duration of the trajectory. K
is known as the makespan. Our planner minimizes K to
produce short trajectories.

B. Unlabeled Planner

We model unlabeled planning as a variant of the unla-
beled Multi-Agent Path-Finding (MAPF) problem. We are
given an undirected connected graph of the environment
GE = (VE , EE), where each vertex v ∈ VE corresponds to
a location in F and each edge (u, v) ∈ EE denotes that
there is a linear path in F connecting u and v. Obstacles are
implicitly modeled by not including a vertex in VE for each
cell that contains an obstacle. We assume that there exists a
vertex vis ∈ VE corresponding to each start location si and

that there exists a vertex vig ∈ VE for each goal location gi.
At each discrete timestep, a robot can either wait at its current
vertex or traverse an edge. For the following formulation, we
assume that the locations corresponding to the vertices are
in a grid world and that z(·) and xy(·) map a vector to its z
and x, y components, respectively. Our goal is to find paths
pi, such that the following properties hold:

P1: Each robot starts at its start vertex: ∀i : xi0 = si.
P2: Each robot ends at its goal vertex: ∀i : xiK = gφ(i).
P3: At each timestep, each robot either stays at its current

position or traverses an edge: ∀k, ∀i: xik = xik+1 or
∃ (u, v) ∈ EE s.t. u and v correspond to xik and xik+1.

P4: No robots occupy the same location at the same time
(vertex collision): ∀k, ∀i 6= j: xik 6= xjk.

P5: No robots traverse the same edge in opposite directions
(edge collision): ∀k, ∀i 6= j: xik 6= xjk+1 or xjk 6= xik+1.

P6: Robots obey downwash constraints when stationary
(downwash vertex collision): ∀k, ∀i 6= j where
xy(xik) = xy(xjk): |z(xik)− z(xjk)| ≥ 2rz .

P7: Robots obey downwash constraints while traversing an
edge (downwash edge collision): ∀k, ∀i 6= j where
xy(xik) = xy(xjk+1), xy(xjk) = xy(xik+1): |z(xik) −
z(xjk+1)| ≥ 2rz or |z(xjk)− z(xik+1)| ≥ 2rz .

We consider a solution optimal if the makespan K is
minimal. If only the first five properties are considered and K
is given, unlabeled MAPF can be solved in polynomial time
by reduction to a maximum-flow problem in a larger graph,
derived from G, known as a time-expanded flow-graph [18].
This graph, denoted by GF , contains O(K ·|VE |) vertices and
is constructed such that a flow in GF represents a solution
to the MAPF instance. This maximum-flow problem can
also be expressed as an Integer Linear Program (ILP) where
each edge is modeled as binary variable indicating its flow
and the objective is to maximize the flow subject to flow
conservation constraints [19]. An ILP formulation allows us
to add additional constraints for P6 and P7.

We build the time-expanded flow-graph GF = (VF , EF )
as intermediate step to formulate the ILP. Compared to
the existing detailed discussions [18], [19], [20], we add
additional annotations con : EF 7→ 2EF to some of the edges
such that con(e) is the set of edges with which e is in conflict
under the downwash model. For each timestep k and vertex
v ∈ VE we add two vertices uvk and wvk to VF and create an
edge connecting them.

as1

b

cg1

(a) GE

uv1k

uv2k

wv1
k

wv2
k

(b) “Gadget” for flow-graph construction.
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(c) GF with K = 2.

Fig. 3. Example flow-graph (Fig. 3(c)) for environment shown in Fig. 3(a) with a single robot. The construction uses a graph “gadget” (Fig. 3(b)) for
each edge in GE . The blue edges are annotated with downwash edge conflicts and the green edges are annotated with downwash vertex conflicts. The
bold arrows in Fig. 3(c) show the maximum flow through the network, which can be used to compute the robots’ paths.



For each timestep k and edge (v1, v2) ∈ EE , we create
a “gadget” connecting uv1

k , u
v2

k , w
v1

k , and wv2

k . As shown
in Fig 3(b), the “gadget” disallows agents to swap their
positions in one timestep, thus enforcing P5. Furthermore,
we connect consecutive timesteps with additional edges
(wvk, u

v
k+1) (green edges in Fig. 3(c)) to enforce P4. Ad-

ditionally we add vertices source and sink, which are
connected to vertices {uv

i
s

0 : ∀i} and {wv
i
g

K : ∀i} respectively.
If a maximum flow is computed on this graph, the flow
describes a path for each robot, fulfilling P1–P5.

Consider vertices v, v′ ∈ VE that, if simultaneously
occupied, would violate P6. Those vertices map to helper
edges ek = (wvk, u

v
k+1) and e′k = (wv

′

k , u
v′

k+1) in GF for all k
(green edges in Fig. 3(c)). In that case we insert e′k into
con(ek) and ek into con(e′k) for all k. Similarly, consider
(v1, v2) ∈ EE and (v′1, v

′
2) ∈ EE that violate P7. These edges

map to helper edges ek and e′k in GF as part of the gadget
for all k (blue edges in Fig. 3(c)). As before we insert e′k
into con(ek) for all k and vice versa.

For each edge (u, v) ∈ EF , we introduce a binary variable
z(u,v). The ILP can be formulated as follows:

maximize
∑

(source,v)∈EF

z(source,v)

subject to
∑

(u,v)∈EF

z(u,v) =
∑

(v,w)∈EF

z(v,w) ∀v ∈ V ′F

ze +
∑

e′ ∈ con(e)

ze′ ≤ 1 ∀e ∈ EF

(6)

where V ′F = VF \ {source, sink}. The first constraint
enforces flow conservation, and thus P3–P5. The second
constraint enforces P6–P7. P1 and P2 are implicitly enforced
by construction of the flow graph. A solution to the ILP
assigns a flow to each edge. We can then easily create the
path pi for each robot by setting tk = k∆t for any ∆t > 0,
and xik based on the flow in GF .

In order to find an optimal solution for an unknown K,
we use a two-step approach. First, we find a lower bound
for K by ignoring P6 and P7. We search the sequence
K = 1, 2, 4, 8, . . . for a feasible K, and then perform a binary
search to find the minimal feasible K, which we denote
as LB(K). Because we ignore the downwash constraints,
we can check the feasibility in polynomial time using the
Edmonds-Karp algorithm on the time-expanded flow-graph.
Second, we execute a linear search starting from LB(K),
solving the fully constrained ILP. In practice, we have found
that the lower bound LB(K) is sufficiently close to the final
K such that a linear search is faster compared to another
modified binary search using the ILP.

V. CONTINUOUS REFINEMENT STAGE
In the continuous refinement stage, we convert the way-

point sequences pi generated by the discrete planner into
smooth trajectories f i. We use the discrete plan to partition
the free space F such that each robot solves an independent
smooth trajectory optimization problem in a region that is
guaranteed to be collision-free.

A. Spatial Partition

The continuous refinement method begins by finding safe
corridors within the free space F for each robot. The safe
corridor for robot ri is a sequence of convex polyhedra
Pik, k ∈ {1 . . .K}, such that, if each ri travels within Pik
during time interval [tk−1, tk], both robot-robot and robot-
obstacle collision avoidance are guaranteed. For robot ri in
timestep k, the safe polyhedron Pik is the intersection of:
• N − 1 half-spaces separating ri from rj for j 6= i
• Nobs half-spaces separating ri from O1 . . .ONobs

.
We separate ri from rj by finding a separating hyperplane
(α

(i,j)
k , β

(i,j)
k ) such that:

`ik ⊂ {x : α
(i,j)
k

T
x < β

(i,j)
k }

`jk ⊂ {x : α
(i,j)
k

T
x > β

(i,j)
k }.

(7)

While this hyperplane separates `ik and `kj , it does not
account for the robot ellipsoids. Without loss of generality,
suppose the hyperplanes are given in the normalized form
where ‖α(i,j)

k ‖2 = 1. Then we accomodate the ellipsoids by
shifting each hyperplane according to its normal vector:

β
(i,j)
k

′
= β

(i,j)
k − ‖Eα(i,j)

k ‖

β
(j,i)
k

′
= β

(i,j)
k + ‖Eα(i,j)

k ‖
(8)

where E = diag(rx, ry, rz) is the ellipsoid matrix. Robot-
obstacle separating hyperplanes are computed similarly, ex-
cept we use a different ellipsoid Eobs for obstacles to model
the fact that downwash is only important for robot-robot
interactions, and we shift the hyperplanes such that they
touch the obstacles.

In our implementation, we require that the obstacles Oi
are bounded convex polytopes described by vertex lists.
Line segments are also convex polytopes described by
vertex lists. Computing a separating hyperplane between
two disjoint convex polytopes Ψ = conv(ψ1 . . . ψmΨ

) and
Ω = conv(ω1 . . . ωmΩ

), where conv denotes the convex
hull, can be posed as an instance of the hard-margin support
vector machine (SVM) problem [21]. However, the ellipsoid
robot shape alters the problem: for a separating hyperplane
with unit normal vector α, the minimal safe margin is
2‖Eα‖2. Incorporating this constraint in the standard hard-
margin SVM formulation yields a slightly modified version
of the typical SVM quadratic program:

minimize αTE2α

subject to αTψi − β ≤ 1 for i ∈ 1 . . .mΨ

αTωi − β ≥ 1 for i ∈ 1 . . .mΩ

(9)

We solve a problem of this form for each robot-robot and
robot-obstacle half-space to yield the safe polyhedron Pik in
the form of a set of linear inequalities. Note that the safe
polyhedra need not be bounded and that Pik ∩ Pik+1 6= ∅
in general. In fact, the overlap between consecutive Pik
allows the smooth trajectories to deviate significantly from
the discrete plans, which is an advantage when the discrete
plan is far from optimal.



B. Bézier Trajectory basis

After computing safe corridors, we plan a smooth trajec-
tory f i(t) for each robot, contained within the robot’s safe
corridor. We represent these trajectories as piecewise polyno-
mials with one piece per time interval [tk, tk+1]. Piecewise
polynomials are widely used for trajectory planning: with an
appropriate choice of degree and number of pieces, they can
represent arbitrarily complex trajectories with an arbitrary
number of continuous derivatives.

We denote the kth piece of robot i’s piecewise polynomial
trajectory as f ik. We wish to constrain f ik to lie within the
safe polyhedron Pik. However, when working in the standard
monomial basis, i.e. when the decision variables are the ai
in the expression

p(t) = a0 + a1t+ a2t
2 + · · ·+ aDt

D,

bounding the polynomial inside a convex polyhedron is not
a convex constraint. Instead, we formulate trajectories as
Bézier curves. A degree-D Bézier curve is defined by a
sequence of D+ 1 control points yi ∈ R3 and a fixed set of
Bernstein polynomials, such that

f(t) = b0,D(t)y0 + b1,D(t)y1 + · · ·+ bD,D(t)yD (10)

where each bi,D is a degree-D Bernstein polynomial with
coefficients1 given in [22]. The curve begins at y0 and ends
at yD. In between, it does not pass through the intervening
control points, but rather is guaranteed to lie in the convex
hull of all control points. Thus, when using Bézier control
points as decision variables instead of monomial coefficients,
constraining the control points to lie inside a safe polyhedron
guarantees that the resulting polynomial will lie inside the
polyhedron also. We define f i as a K-piece, degree-D Bézier
curve and denote the dth control point of f ik as yik,d. The
degree parameter D must be sufficiently high to ensure
continuity at the user-defined continuity level C.

C. Optimization Problem

The set of Bézier curves that lie within a given safe
corridor describes a family of feasible solutions to a single
robot’s planning problem. We select an optimal trajectory by
minimizing a weighted combination of the integrated squared
derivatives:

cost(f i) =

C∑
c=1

γc

∫ T

0

∥∥∥∥ dcdtc f i(t)
∥∥∥∥2

2

dt (11)

where the γc ≥ 0 are user-chosen weights on the derivatives.
A typical choice in our experiments is to penalize accelera-
tion and snap equally. As an input to the trajectory optimiza-
tion stage, we require the user to supply an initial guess of
the duration ∆t of each timestep, such that T = K∆t.

Our decision variable y consists of all control points for
f i concatenated together:

y =
[
yi1,0

T
. . . yi1,D

T
, . . . , yiK,0

T
. . . yiK,D

T
]T

(12)

1 The canonical Bernstein polynomials are defined over the time interval
[0, 1], but they are easily modified to span our desired time interval.

The objective function (11) is a quadratic function of y,
which can be expressed in the form:

cost(f i) = yT (BTQB)y (13)

where B is a block-diagonal matrix transforming control
points into polynomial coefficients, and the formula for Q is
given in [23]. The start and goal position constraints, as well
as the continuity constraints between successive polynomial
pieces, can be expressed as linear equalities. Thus, we solve
the quadratic program:

minimize yT (BTQB)y

subject to yik,d ∈ Pik ∀ i, k, d
f i(0) = si, f i(T ) = gφ(i)

f i continuous up to derivative C
dc

dtc
f i(t) = 0 ∀ c > 0, t ∈ {0, T}

(14)

It is important to note that this quadratic program may not
always have a solution due to our conservative assumptions
regarding velocity profiles. In these cases, we fall back on a
solution that follows the discrete plan exactly, coming to a
complete stop at corners. Details of this solution are given
in [13].

The corridor-constrained Bézier formulation presents one
notable shortcoming: for a given safe polyhedron Pik, there
exist degree-D polynomials that lie inside the polyhedron
but cannot be expressed as a Bézier curve with control points
that are contained within Pik. Empirical exploration of Bézier
curves suggests that this problem is most significant when the
desired trajectory is near the faces of the polyhedron rather
than the center. Further research is needed to characterize
this issue more precisely.

D. Iterative Refinement

Solving (14) for each robot converts the discrete plan into
a set of smooth trajectories that are locally optimal given
the spatial decomposition. However, these trajectories are
not globally optimal. In our experiments, we found that the
smooth trajectories sometimes lie quite far away from the
original discrete plan. Motivated by this observation, we
implement an iterative refinement stage where we use the
smooth trajectories to define a new spatial decomposition,

(a) (b)

Fig. 4. Illustration of discrete plan postprocessing. (a) In timestep k,
robot rj arrives at a graph vertex v and robot ri leaves v. The separating
hyperplane between `ik and `jk (with ellipsoid offset shaded in grey) prevents
both robots from planning a trajectory that passes through v. (b) Subdivision
of discrete plan ensures that this situation cannot occur.



TABLE I
RUNTIME FOR DIFFERENT EXAMPLES AND SAFETY DISTANCES, SEE SECTION VI-B. ALL TIMES ARE GIVEN IN SECONDS.

Discrete Continuous
Example N Nobs Grid Size rz LB(K) tLB tILP K tdis NredObst t1 t1(hp) t1(qp) tcon

USC 32 61 13× 13× 5
0.3 15 2.3 19 17 39 9 2.7 0.6 2.1 190.9 17 17 32

Maze50 50 441 20× 13× 5
0.3 26 8.6 51 26 60 43 8.6 2.8 5.8 570.9 67 26 76

Sort200 200 1320 29× 29× 5
0.3 19 101 438 19 541 94 36 20 16 2390.9 615 19 722

and use the same optimization method to solve for a new set
of smooth trajectories.

For time interval k, we sample f ik at S evenly-spaced
points in time to generate a set of points Sik. The number
of sample points S is a user-specified parameter, set to
S = 32 in our experiments. We then compute the separating
hyperplanes as before, except we separate Sik from Sjk instead
of `ik from `jk. This problem is also a (slightly larger)
ellipsoid-weighted support vector machine instance. While
the sample points Sik are not a complete description of
f ik, Sik is guaranteed to be linearly separable from Sjk for
i 6= j, because the polynomial pieces f ik, f

j
k lie inside their

respective disjoint polyhedra Pik, Pjk .
These new safe corridors are roughly “centered” on the

smooth trajectories, rather than on the discrete plan. Intu-
itively, iterative refinement provides a chance for the smooth
trajectories to move further towards a local optimum that was
not feasible under the original spatial decomposition.

Iterative refinement can be classified as an anytime al-
gorithm. If a solution is needed quickly, the original set
of f i can be obtained in a few seconds. If the budget
of computational time is larger, iterative refinement can be
repeated until the quadratic program cost (13) converges.

The user-supplied timestep duration ∆t directly affects the
magnitudes of dynamic quantities such as acceleration and
snap that are constrained by the robot’s actuation limits. In
the case that the final refined trajectories f i violate some
constraint, we can apply a uniform temporal scaling to all
trajectories. For quadrotors, as the temporal scaling goes to
infinity, the actuator commands are guaranteed to approach
a hover state [15], so kinodynamically feasible trajectories
can always be found.

E. Discrete Postprocessing

Our grid-based MAPF discrete planner produces way-
points pi that require some postprocessing to ensure that they
satisfy the collision constraints (2) under arbitrary velocity
profiles. In particular, we must deal with the case when one
robot ri arrives at a vertex v ∈ VE in the same timestep k
when another robot rj leaves v. This situation creates a con-
flict where neither robot’s smooth trajectory can pass through
v, as illustrated in Fig. 4. We ensure that this situation cannot
happen by dividing each discrete line segment in half. In
the subdivided discrete plan, odd timesteps exit a graph-
vertex waypoint and arrive at a segment-midpoint waypoint,
while even timesteps exit a segment-midpoint waypoint and

arrive at a graph-vertex waypoint. Under this subdivision, the
conflict cannot occur.

In our experiments, we noticed that the continuous tra-
jectories typically experience peak acceleration at t = 0 and
t = T due to the requirement of accelerating to/from a com-
plete stop. We add an additional wait state at the beginning
and end of the discrete plans to reduce the acceleration peak.

VI. EXPERIMENTS

We implement the discrete planner in C++ using the Boost
Graph library for maximum flow computation and Gurobi
7.0 as the ILP solver. The continuous refinement stage is
implemented in Matlab. We convert adjacent grid-cell obsta-
cles into NredObst larger boxes using a greedy algorithm.
To compute separating hyperplanes for the safe corridors,
our method requires solving O(KN2 +KNredObsN) small
ellipsoid-weighted SVM problems. For these problems, we
use the CVXGEN package [24] to generate C code optimized
for the exact quadratic program specification (9). The per-
robot trajectory optimization quadratic programs (14) are
solved using Matlab’s quadprog solver. Since these prob-
lems are independent, this stage can take advantage of up to
N additional processor cores.

In our experiments, we use a polynomial degree D = 7
and enforce continuity up to the fourth derivative (C = 4).
We evaluate our method in simulation and on the
Crazyswarm — a swarm of nano-quadrotors [25].

A. Downwash Characterization

In order to determine the ellpsoid radii E, we executed
several flight experiments. For rz , we fly two quadrotors
directly on top of each other and record the average position
error of both quadrotors at 100 Hz for varying distances
between the quadrotors. We noticed that high controller
gains lead to very low position errors even in this case, but
can cause fatal crashes when the quadrotors are close. We
determined rz = 0.3 m to be a safe vertical distance. For
the horizontal direction, we use rx = ry = 0.12 m. We set
Eobs to a sphere of radius 0.15 m based on the size of the
Crazyflie quadrotor.

B. Runtime Evaluation

We execute our implementation on a PC running Ubuntu
16.04, with a Xeon E5-2630 2.2 GHz CPU and 32 GB
RAM. This CPU has 10 physical cores, which improves the
execution runtime for the continuous portion significantly.
We compute plans for three example problems for 32 to 200



(a) Full 32-robot trajectory plan after six iterations of refinement. The start
and end positions are marked by squares and filled circles, respectively. The
obstacles are not shown for clarity.

(b) Picture of the final configuration after the test flight. A video is available
as supplemental material.

Fig. 5. Formation change example where quadrotors fly from an xy−plane grid formation to a goal configuration spelling “USC” while avoiding obstacles.

(a) 1 iteration (b) 2 iterations (c) 6 iterations

Fig. 6. Subset of results for the example shown in Fig. 5 after different numbers of refinement iterations. Fine lines represent the discrete plans pi; heavy
curves represent the continuous trajectories f i. The remaining 28 robots are hidden for clarity.

robots navigating in obstacle-rich environments. Table I
summarizes the problems and breaks down the observed
computation time into component parts. For the discrete step
we report the runtime to find LB(K) (tLB), the runtime to
solve the ILP with known K (tILP ), and the total time for
the discrete solver to find paths for each robot (tdis). For the
continuous step we report NredObst, the runtime for the first
iteration (t1), and the total time (tcon). For the first iteration,
we report the time for finding the hyperplanes (t1(hp)) and
the time for solving the quadratic program (t1(qp)).

To investigate the effect of the robot ellipsoid size on
computation time, we try each example with two ellipsoid
heights: rz = 0.3 m corresponding to our experimental re-
sults, and rz = 0.9 m as an arbitrary larger safety distance.
These necessitate safety margins of one and three empty grid
cells, respectively, in the discrete planner. We notice that the
choice of rz has little impact on the performance because
there is enough slack in the examples to achieve a specific
makespan even with higher safety distances. Furthermore,
the estimated lower bound for K is very close to the actual
lowest possible K in our examples, and the runtime for the
discrete solver is dominated by solving the ILP.

In the continuous portion, the balance between computing
separating hyperplanes and solving the per-robot quadratic
programs depends on the size of the problem. For all exper-

iments, an initial solution is found in less than one minute.
In these examples, we executed a total of six refinement
iterations, which was enough for the quadratic program
cost (13) to converge in all of our experiments.

One of the examples (“USC”) is discussed in more detail
in the next section. The supplemental material contains
animated simulations for all examples.

C. Flight Test

We discuss the different steps of our approach on a
concrete task with 32 quadrotors. In this task, the quadrotors
begin in a grid in the x − y plane, fly through a wall with
three holes, and form the letters “USC” in the air.

The discrete planner plans on a grid of 0.5 m side length
and finds a solution of K = 17 timesteps in 40 seconds.
The continuous planner needs three seconds to find the
first set of smooth trajectories and finishes six iterations
of refinement after 19 seconds. Fig. 7 shows the effect
of iterative refinement on the dynamics properties of the
trajectories f i. For each iteration, we take the maximum
acceleration and angular velocity over all robots for the
duration of the trajectories. Iterative refinement results in
trajectories with significantly smoother dynamics. This effect
is also qualitatively visible when plotting a subset of the
trajectories, as shown in Fig. 6. The final set of 32 trajectories
is shown in Fig. 5(a).



Fig. 7. Illustration of worst-case acceleration and angular velocity over
all robots in “USC” example during six iterative refinement cycles. Left:
peak acceleration was reduced from 5.2 to 1.6m/s2. Right: peak angular
velocity was reduced from 2.2 to 0.4 rad/s.

We use a swarm of Crazyflie 2.0 nano-quadrotors to
execute the trajectories in a space with a physical barrier
with windows. The space is 10 m× 16 m× 2.5 m in size
and equipped with a VICON motion capture system with 24
cameras. We upload the planned trajectories to the quadrotors
before takeoff, and use the Crazyswarm infrastructure [25]
to execute the trajectories. State estimation and control run
onboard the quadrotor, and the motion capture system infor-
mation is broadcast to the UAVs for localization. Figure 5(b)
shows a snapshot of the execution when the quadrotors
reached their final state. The executed trajectories can be
visualized with long-exposure photography, as shown in
Fig. 1. The supplemental video shows the full trajectory
execution.

VII. CONCLUSION

We presented a trajectory planning method for large
quadrotor teams. Our approach is downwash-aware and thus
creates plans where robots can safely fly in close proximity
to each other. We plan trajectories using two independent
stages, a discrete stage and a continuous stage. The presented
discrete planner finds a goal assignment for each robot and
a path such that the makespan is minimized while avoiding
collisions and respecting downwash constraints. The con-
tinuous stage decouples each robot’s trajectory planning,
allowing easy parallelization and improving performance for
large teams. The two-stage architecture supports the use of
different discrete multi-agent planners, for example planners
where each robot has an assigned goal or task-specific
planners. Iterative refinement offers a user-controlled tradeoff
between trajectory quality and computation time.

Our approach can compute safe and arbitrarily smooth
trajectories for hundreds of quadrotors in dense environments
with obstacles in a few minutes. The trajectory plan outputs
have been tested and executed safely in numerous trials on
a team of 32 quadrotors.

In future work, we plan to generalize our method to sup-
port arbitrary environments and start and goal locations that
are not limited to an underlying grid, by exploring different
discrete planning algorithms. We also plan to investigate
performance improvements in both discrete and continuous
stages.
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