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Abstract— We outline a system architecture for a large
swarm of miniature quadcopters. We discuss onboard planning,
control, state estimation, communications, and a method for
motion-capture localization using identical marker arrange-
ments. We validate the system with a 49-vehicle formation flight.

I. INTRODUCTION

Quadcopters are a popular research platform due to
their agility, simplicity, and wide applicability. Most re-
search quadcopters are large enough to carry cameras and
smartphone-grade computers, but they are also expensive
and require a large space to operate safely. For research into
very large swarms, smaller quadcopters are more attractive.
The reduced size of these vehicles motivates different system
design choices compared to a typical setup for larger vehicles
in smaller numbers.

Here we outline the system architecture for a swarm of
49 very small quadcopters operating indoors. The vehicles
use a motion-capture system for localization and commu-
nicate over three shared radios. Our system uses off-the-
shelf hardware and performs most computation onboard.
To our knowledge, the system described here is the largest
indoor quadcopter swarm to date, and the largest number of
quadcopters controlled per radio.

II. VEHICLE

The Crazyflie 2.0 quadcopter (Fig. 1, inset) measures 92
millimeters between diagonally opposed motor shafts and
weighs 27 grams with a battery. It contains a 32-bit, 168-
MHz ARM microcontroller with floating-point unit that is
capable of significant onboard computation. Software and
hardware are both open-source. The Crazyflie communicates
with a PC over the Crazyradio PA, a 2.4 GHz USB radio that
transmits up to two megabits per second in 32-byte packets.

The Crazyflie’s small size makes it suitable for indoor
flight in dense formations. It can survive high-speed crashes
due to its low inertia and poses little risk to humans.

IIT. ARCHITECTURE OVERVIEW

Our system is outlined in Fig. 2. We track the vehicles
with a Vicon motion capture system using passive spher-
ical markers. While this creates a single point of failure,
we chose it over alternatives due to its high performance:
typical position errors are less than one millimeter [1].
In comparison, a state-of-the-art decentralized localization
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Fig. 1.
mation. The bottom layer is 3 X 3m with 0.5 m spacing between vehicles. A
video of this flight is available at https://youtu.be/ezTayb76x9U.
Inset: Crazyflie 2.0 quadcopter with motion capture markers.

Forty-nine Crazyflies flying in a four-layer rotating pyramid for-

system using ultra-wideband radio triangulation [2] showed
position errors of over 10 centimeters, too large for dense
formations. While vision-based methods are both accurate
and decentralized [3], the required cameras and computers
necessitate a much larger vehicle.

In contrast to [1], [4], [5], we implement the majority
of in-flight computation onboard. The base station sends
complete trajectory descriptions to the vehicle in the form
of polynomials, ellipses, etc. For position feedback, the base
station broadcasts vehicle poses on a shared radio channel.

The main onboard loop runs at 500 Hz. In each loop cycle,
the vehicle reads its inertial measurement unit (IMU) and
runs the state estimator, trajectory evaluator, and position
controller. Pose messages arrive asynchronously and are
fused into the state estimate on the next cycle.

Since the full trajectory plan is stored onboard, the system
is robust against significant radio packet loss. If a packet is
dropped, the vehicle relies on its IMU to update the state
estimate. We have successfully tested the system in a hover
state with position broadcasts throttled to 5 Hz.

IV. COMPONENTS
A. Object Tracking

One major limitation of Vicon’s standard Tracker software
is that it requires a unique marker arrangement for each
object. The Crazyflie’s small size limits the number of
locations to place a marker, making it impossible to form
49 unique arrangements that can be reliably distinguished.
Therefore, we obtain only raw point clouds from the Vicon
system, and implement our own object tracking algorithm
that handles identical marker arrangements.
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Fig. 2. Diagram of major system components. Note one-way data flow.
Our object tracker is based on the Iterative Closest Point
(ICP) algorithm. We initialize the tracker with the vehicles
on the floor in a known configuration. During flight, we
track frame-by-frame motion with ICP. We estimate linear
and angular velocity from the ICP alignments and reject
physically implausible values as incorrect alignments.

B. State Estimation

An onboard Extended Kalman Filter (EKF) fuses Vicon
and IMU measurements at S00 Hz. The filter state consists
of position, velocity, and an attitude quaternion, following
the indirect error-state formulation of [6].

Whereas some works estimate accelerometer and gyro-
scope bias in the EKF, we have found that these biases do
not drift significantly during the Crazyflie’s short battery life.
We measure biases on a level floor at startup and subtract
these measurements for the duration of the flight.

C. Planning

We have implemented several onboard planning methods:

o Large piecewise polynomials uploaded from the base

station across multiple radio packets.

e Online planning of a single-piece polynomial starting at

the current state and ending at a given state.

« Ellipses parameterized by the center, axes, and period.
These methods support a diversity of applications. For ex-
ample, an aggressive maneuver might use a long piecewise
polynomial optimized offline. A slow waypoint trajectory
might use only the online single-piece planner. The ellipse
planner is useful for demos, generating visually appealing
behavior from few parameters.

In all cases, we make use of the quadcopter model’s
differential flatness to parameterize trajectories in a minimal
representation of {z,y, z, yaw}. From these values and their
derivatives, we compute the desired thrust, attitude, and
angular velocities online at 500 Hz using the method of [5].

D. Communication

As illustrated in Fig. 2, all critical communication is
one-way. For 49 vehicles we use three radios, with each
vehicle permanently assigned to one radio. We transmit
xyz positions as 16-bit fixed-point numbers and compress
quaternions into 32 bits using the “smallest three” method.
Compression allows us to fit two position updates in one

32-byte radio packet without degrading the measurements
beyond their inherent noise level.

To support synchronized movement, we split trajectory
commands into per-vehicle upload messages and a globally
broadcast start message.

E. Control

We use the nonlinear position controller of [5], augmented
with integral terms for position and yaw error. These are
critical for coping with part variations, propeller damage,
etc. Manual trimming can compensate for such issues on a
single vehicle, but this is not feasible on a large fleet.

E. Software Tools

Many routine tasks become non-trivial when working with
a fleet of 49 vehicles. We have developed command-line tools
for mass rebooting, firmware updates, and battery voltage
checks over the radio. A Python scripting layer supports
development of complex multi-stage swarm flight plans.

Moving computation onboard complicates in-flight de-
bugging due to constrained radio telemetry bandwidth and
limited permanent storage for logs. To ease this problem, we
structure major onboard procedures as platform-independent
modules, allowing debugging in simulation on a PC.

V. CONCLUSIONS

We have outlined a system architecture for robust, syn-
chronized, dynamic control of the largest indoor quadcopter
swarm to date. Our system fully utilizes the vehicles’ on-
board computation, allowing for robustness against unreli-
able communication and a rich set of trajectory planning
methods requiring little radio bandwidth. Fig. 1 shows the
full 49-quadcopter swarm flying in formation.

Ongoing work focuses on reliability, including controller
failure detection, downwash awareness, and object tracking
failure recovery. The system described here serves as a
foundation for a wide range of future work in multi-robot
planning, coordination, and control. A forthcoming publi-
cation from our group will describe the components of this
system, the platform constraints, tradeoffs, and the associated
design decisions - in greater detail.
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