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Abstract—We have conducted two investigations on the ability
of human participants to solve challenging collective coordination
tasks in a distributed fashion with limited perception and
communication capabilities similar to those of a simple ground
robot. In these investigations, participants were gathered in a
laboratory of networked workstations and were given a series
of different collective tasks with varying communication and
perception capabilities. Here, we focus on our latest investigation
and describe our methodology, platform design considerations,
and highlight some interesting observed behaviors. These investi-
gations are the preliminary phase in designing a formal strategy
for learning human-inspired behaviors for solving complex dis-
tributed multirobot problems, such as pattern formation.

I. INTRODUCTION

Distributed coordination of large teams of robots for solving
collective tasks is a challenging problem [1]. While group
behaviors of numerous species (e.g., ants, bees, birds, fish,
bats) have motivated novel approaches to coordination of
multirobot teams [2], few works exist in multirobot control
inspired by human group behavior [3]. In cognitive science,
experimental approaches have been used for modeling self-
organization in crowds and pedestrian motion [4]. In computer
science, behavioral experiments have been conducted to ex-
amine the ability of human subjects to solve complex global
tasks in social networks in a distributed fashion using only
local interactions [5].

We have used an experimental approach similar to that of
Kearns [5] to explore the ability of human participants to
solve complex coordinated tasks using limited perception and
communication capabilities similar to those of a simple ground
robot. To conduct our investigations, we created a networked
experimental platform through which we enforced limitations
on participants’ communication and perception capabilities.

II. METHODOLOGY

To date, we have conducted two one-and-a-half-hour long
experimental sessions. The pilot 1 investigation had 15 si-
multaneous participants, and the pilot 2 investigation had 25.
Participants were recruited from a convenience population,
and included both male and female university students in
their 20s, all enrolled in a robotics course. In each session,
participants were gathered in a classroom and each participant
was assigned a computer workstation to run our networked
experimental platform (Section III). Using the graphical user
interface (GUI), participants were able to control their agent’s
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Fig. 1. Sample screenshot of participant application’s GUI.
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Fig. 2. Initial random configurations (Top) and final formations (Bottom) for
a representative set of tasks in pilot 2.

motion and color in a collective workspace (called the arena),
and interact with the other participants’ agents. Each session
was composed of several tasks in which participants were
asked to solve a collective pattern formation problem in the
arena. These tasks were terminated by the experimenter once
there was no further activity by the agents.

In both investigations, participants were instructed to inter-
act only through the experimental platform. To minimize the
influence of verbal communication, participants in the second
investigation wore earplugs throughout the session.

In the second investigation, a collective reward (pizza) was
given to incentivize faster completion of the tasks. The reward
started at a maximum value of $500, and decreased as time
progressed according to a sigmoid function.

III. EXPERIMENTAL PLATFORM

A networked experimental platform was created for our
investigations. A key consideration in the platform design
was for the sensory and communication capabilities of the
human-controlled agents to resemble those available to our
in-house robotic platform: a low-cost differential-drive robot
which features a laser rangefinder for proximity sensing, a
9-axis IMU, and an array of LEDs for color signaling. The
experimental platform is comprised of two major elements:
(1) the participant application; and (2) the server.



Fig. 3. Color of all agents for the full duration of task 1. The inset indicates
an instance of color signaling by agent 15 to notify neighbors (agents 7, 23) to
adjust their position at 160 s (marked), well after color consensus is achieved.

The participant application’s GUI (Fig.1) shows, depending
on the task, one or both of the Neighborhood View (NV)
and the Overhead View (OV). The Neighborhood View (or
local view), which provides local perception for each agent,
emulates our ground robot’s omnidirectional distance sensor
with limited range. Thus, occlusion and lack of color detection
are accounted for in the Neighborhood View. The Overhead
View (or global view) emulates a downward-facing overhead
camera that broadcasts images of the arena to all robots.

Participants can maneuver their agent with the up, down,
left, and right keys, and change its color with the A, S, D keys.
The Localized! button is used to indicate that a participant
has localized their agent in the Overhead View, and Done! is
used to indicate that a participant feels they may not need to
take any further actions. These buttons can be reverted by the
participant to indicate that the previously indicated conditions
no longer hold. They are provided for the sole purpose of post
hoc analysis and cannot be seen by other participants.

The server runs the backend processes, including recording
each participant’s data (position, color, Localized! and Done!
signals, current timestamp) every 100ms.

IV. INVESTIGATIONS

Each session was initiated with a training period, in which
the GUI was explained and a practice game was held.

The initial pilot incorporated a wide range of formation
tasks. The reason for this was twofold: (1) to examine human
subjects’ ability to solve a range of complex coordinated tasks
using the restrictive GUI; (2) to improve our experimental
methodology in future investigations.

The second pilot focused on the formation of circles and
rectangles with varied GUI capabilities in each task (Table I).
In color-enabled tasks, participants had to achieve consensus
on the formation color. To reduce possible biases from per-
forming similar tasks consecutively, tasks were ordered based
on formation objective, color options, and available views.

On completion of each task, participants were given a task-
specific probe in which they were asked to describe their
strategies, the team roles they adopted, and any interesting
behaviors they observed. Following the session, a compre-
hensive probe asked participants to describe their localization
strategies, signaling mechanisms, and general preference on
adopting some roles over the others.

TABLE I
FORMATION TASKS IN PILOT 2 AND ELAPSED TIMES TO COMPLETE THEM

Order 1 2 3 4 5 6 7

Tasks Rectangle Circle Square Circle Rectangle Circle Rectangle

Views OV-NV OV-NV OV OV OV-NV OV-NV NV

# Colors 3 3 3 1 3 3 N/A

Time (s) 167 144 149 77 62 53 513

V. RESULTS

Participants successfully completed all formation tasks
(Fig. 2). In task 7, with only the Neighborhood View available,
the task duration was significantly higher than when the
Overhead View was available, indicating a strong effect of
global feedback (Table I).

Robustness. In task 1, an additional uncontrolled agent
was mistakenly introduced. As with all other agents, it was
initialized with a random position and color (red). Participants
accommodated for the faulty agent by forming the rectangle
around it and adopting the same color.

Signaling Mechanisms. In the absence of verbal communi-
cation, participants used motion and color to convey messages
to their neighbors. Observed signals included repeatedly col-
liding into another agent and rapidly changing color (Fig. 3).

High-Level Behaviors. Probe responses suggest the exis-
tence of a finite set of high-level behaviors from which each
participant’s strategies can be formed.

Emergence of Roles. A wide range of team roles were
observed during the tasks. These team roles are more com-
plex than only leader-follower roles and emerge dynamically
depending on the circumstances.

Heterogeneity. Different levels of traits such as stability and
patience were observed among participants. These intrinsic
characteristic differences may explain why certain roles and
behaviors were more frequently adopted by some individuals.

VI. FUTURE WORK

Ongoing work is focused on data interpretation and im-
plementation of the high-level behaviors reported by the
participants. The resulting algorithms will be tested in simula-
tion of similar coordinated collective tasks. Future work will
involve designing a formal experimental protocol for learning
distributed multirobot coordination policies from our data.
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